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Series Editor’s Note

For some reason, the topic of confirmatory factor analysis (CFA) has not
received the attention that it deserves. Two closely related topics, explor-
atory factor analysis (EFA) and structural equation modeling (SEM), have
dozens of textbooks written about them. Book-length treatments of CFA
are rare and that is what makes this book distinctive.

One might think that there are so few books on CFA because it is so
rarely used. However, this is not the case. Very often, those who conduct
EFA follow up the analysis with CFA. Additionally, SEM always involves a
measurement model and very often the best way to test that model is with
CFA. Poor-fitting structural equation models are almost always due to CFA
problems. Thus, to be proficient at SEM, the analyst must know CFA. This
book very nicely explains the links between CFA and these two different
methods, in particular the natural process of beginning with EFA, proceed-
ing to CFA, and then SEM.

I think it is ironic that SEM has received so much more attention than
CFA, because the social and behavioral sciences have learned much more
from CFA than from SEM. In particular, through CFA we are able to
understand the construct validity of attitudes and personality, and CFA
provides important information about the relative stability of individual
differences throughout the lifespan.

Unlike most books on factor analysis, this one spares us all the matri-
ces with their transposes, Kronecker products, and inverses. Certainly
matrix algebra is critical in the theory, proofs, and estimation of CFA, but
for day-to-day practitioners, it just gets in the way. This is not to say that
the author, Timothy A. Brown, doesn’t discuss technical issues where nec-
essary. The text is complicated where appropriate.
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An example of one such complicated topic is the multitrait–
multimethod matrix, first proposed by Donald Campbell and Donald
Fiske. I am pleased that Brown decided to devote a full chapter to the
topic. Interestingly, a generation of researchers tried to find EFA models
for the matrix and never developed a completely satisfactory model.
Another generation of researchers worked on several CFA models for the
matrix, and Brown very nicely summarizes the models they produced.

Another useful feature of this book is that it contains an entire chapter
devoted to issues of statistical power and sample sizes. Investigators need
to make decisions, costly both in terms of time and money, about sample
size. Very often they make those decisions using rather arbitrary proce-
dures. The book outlines a formal and practical approach to that question.

For breadth of applications, the book provides examples from several
different areas of the social and behavioral sciences. It also illustrates the
analyses using several different software programs. Preferences for com-
puter programs change as fast as preferences do for hair styles; thus, it is
an advantage that the book is not tied to one computer program. Most
readers would benefit from analyzing data of their own as they read the
book.

Construct validity, instrument development and validation, reduction
of the number of variables, and sources of bias in measurement, to name
just a few, are subjects supported by high-quality CFA. Almost all research
data include many variables; therefore, Brown’s detailed and careful treat-
ment of this important topic will be of benefit in almost all research situa-
tions. A gap in the field of multivariate data analysis that has existed for far
too long has finally been filled. Researchers now have a readable, detailed,
and practical discussion of CFA.

DAVID A. KENNY
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PrefacePreface

Preface

This book was written for the simple reason that no other book of its kind
had been published before. Although many books on structural equation
modeling (SEM) exist, this is the first book devoted solely to the topic of
confirmatory factor analysis (CFA). Accordingly, for the first time, many
important topics are brought under one cover—for example, the similari-
ties/differences between exploratory factor analysis (EFA) and CFA, the
use of maximum likelihood EFA procedures as a precursor to CFA, diag-
nosing and rectifying the various sources for the ill-fit of a measurement
model, analysis of mean structures, modeling with multiple groups (e.g.,
MIMIC), CFA scale reliability evaluation, formative indicator models, and
higher-order factor analysis. After covering the fundamentals and various
types of CFA in the earlier chapters, in later chapters I address issues like
CFA with non-normal or categorical indicators, handling missing data,
and power analysis/sample size determination, which are germane to SEM
models of any type. Although it is equally important to CFA practice,
another reason I included this material was because of the lack of adequate
coverage in preexisting SEM sourcebooks. Thus, I hope the book will serve
as a useful guide to researchers working with a latent variable model of any
type. The book is not tied to specific latent variable software packages, and
in fact the five most popular programs are featured throughout (Amos,
EQS, LISREL, Mplus, SAS/CALIS). However, readers will note that this
book is the first to provide an extensive treatment of Mplus, a program
that is becoming increasingly popular with applied researchers for its ease
of use with complex models and data (e.g., categorical outcomes, categori-
cal latent variables, multilevel data).

The target readership of this book is applied researchers and graduate
students working within any domain of social and behavioral sciences
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(e.g., psychology, education, political science, management/marketing,
sociology, public health). In the classroom, this book can serve as a pri-
mary or supplemental text in courses on advanced statistics, factor analy-
sis, SEM, or psychometrics/scale development. For applied researchers,
this book can be used either as a resource for learning the procedures of
CFA or, for more experienced readers, as a reference guide for dealing with
complex CFA models or data issues. What each chapter specifically covers
is described in Chapter 1. The first five chapters deal with the fundamen-
tals of CFA: what the researcher needs to know to conduct a CFA of any
type. Thus, especially for readers new to CFA, it is recommended that the
first five chapters be read in order, as this material is the foundation for the
remainder of the book. Chapters 6 through 10 address specific types of
CFA and other issues such as dealing with missing or categorical data and
power analysis. The reading order of the second group of chapters is less
important than for the first.

Advances in quantitative methodology are often slow to be picked up
by applied researchers because such methods are usually disseminated in a
manner inaccessible to many end users (e.g., formula-driven articles in
mathematical/statistical journals). This is unfortunate, because multi-
variate statistics can be readily and properly employed by any researcher
provided that the test’s assumptions, steps, common pitfalls, and so on, are
laid out clearly. Keeping with that philosophy, this book was written be a
user-friendly guide to conducting CFA with real data sets, with an empha-
sis more on conceptual and practical aspects than on quantitative formu-
las. Several strategies were used to help meet this goal: (1) every key con-
cept is accompanied by an applied data set and the syntax and output from
the leading latent variable software packages; (2) tables are included that
recap the procedures or steps of the methods being presented (e.g., how to
conduct an EFA, how to write up the results of a CFA study); (3) numer-
ous figures are provided that graphically illustrate some of the more com-
plicated concepts or procedures (e.g., EFA factor rotation, forms of mea-
surement invariance, types of nonpositive definite matrices, identification
of formative indicator models), and (4) many chapters contain appendices
with user-friendly illustrations of seemingly complex quantitative opera-
tions (e.g., data generation in Monte Carlo simulation research, calculation
of matrix determinants and their role in model fit and improper solu-
tions). I have also provided a website (http://people.bu.edu/tabrown/)
with data and computer files for the book’s examples and other materials
(e.g., updates, links to other CFA resources). I hope that through the use
of the aforementioned materials, even the most complicated CFA model or
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data issue has been demystified and can now be readily tackled by the
reader.

In closing, I would like to thank the people who were instrumental in
the realization of this volume. First, thanks to Series Editor David A.
Kenny, who, in addition to providing very helpful comments on specific
sections, played an enormous role in helping me to shape the scope and
coverage of this book. In addition, I would like to extend my appreciation
to C. Deborah Laughton, Publisher, Methodology and Statistics, who pro-
vided many excellent suggestions and positive feedback throughout the
process and who secured several terrific outside reviews. Indeed, I am
grateful to the following reviewers, whose uniformly constructive and
thoughtful feedback helped me strengthen the book considerably: Larry
Price, Texas State University–San Marcos; Christopher Federico, Univer-
sity of Minnesota; and Ke-Hai Yuan, University of Notre Dame. I would
also like to thank William Meyer, Production Editor at The Guilford Press,
for his work in bringing a very technically complex manuscript to press.
And finally, special thanks to my wife, Bonnie, for her continuous encour-
agement and support.
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CONFIRMATORY FACTOR ANALYSIS FOR APPLIED RESEARCHIntroduction

1

Introduction

USES OF CONFIRMATORY FACTOR ANALYSIS

Confirmatory factor analysis (CFA) is a type of structural equation model-
ing (SEM) that deals specifically with measurement models, that is, the
relationships between observed measures or indicators (e.g., test items, test
scores, behavioral observation ratings) and latent variables or factors. A
fundamental feature of CFA is its hypothesis-driven nature. It is unlike its
counterpart, exploratory factor analysis (EFA), in that the researcher must
prespecify all aspects of the CFA model. Thus, the researcher must have a
firm a priori sense, based on past evidence and theory, of the number of
factors that exist in the data, of which indicators are related to which fac-
tors, and so forth. In addition to its greater emphasis on theory and
hypothesis testing, the CFA framework provides many other analytic pos-
sibilities that are not available in EFA. These possibilities include the eval-
uation of method effects and the examination of the stability or invariance
of the factor model over time or informants. Moreover, for the reasons dis-
cussed below, CFA should be conducted prior to the specification of an
SEM model.

CFA has become one of the most commonly used statistical proce-
dures in applied research. This is because CFA is well equipped to address
the types of questions that researchers often ask. Some of the most com-
mon uses of CFA are as follows.

Psychometric Evaluation of Test Instruments

CFA is almost always used during the process of scale development to
examine the latent structure of a test instrument (e.g., a questionnaire). In
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this context, CFA is used to verify the number of underlying dimensions of
the instrument (factors) and the pattern of item–factor relationships (fac-
tor loadings). CFA also assists in the determination of how a test should be
scored. When the latent structure is multifactorial (i.e., two or more fac-
tors), the pattern of factor loadings supported by CFA will designate how a
test might be scored using subscales; that is, the number of factors is indic-
ative of the number of subscales, and the pattern of item–factor relation-
ships (which items load on which factors) indicates how the subscales
should be scored. Depending on other results and extensions of the analy-
sis, CFA may support the use of total scores (composite of all items) in
addition to subscale scores (composites of subsets of items). For example,
the viability of a single total score might be indicated when the relation-
ships among the latent dimensions (subscales) of a test can be accounted
for by one higher-order factor, and when the test items are meaningfully
related to the higher-order factor (see higher-order CFA; Chapter 8). CFA
is an important analytic tool for other aspects of psychometric evaluation.
It can be used to estimate the scale reliability of test instruments in a man-
ner that avoids the problems of traditional methods (e.g., Cronbach’s
alpha; see Chapter 8). Given recent advances in the analysis of categorical
data (e.g., binary true/false test items), CFA now offers a comparable ana-
lytic framework to item response theory (IRT). In fact, in some ways, CFA
provides more analytic flexibility than the traditional IRT model (see
Chapter 9).

Construct Validation

Akin to a factor in CFA, a construct is a theoretical concept. In clinical psy-
chology and psychiatry, for example, the mental disorders (e.g., major
depression, schizophrenia) are constructs manifested by various clusters of
symptoms that are reported by the patient or observed by others. In socio-
logy, juvenile delinquency might be construed as a multidimensional
construct defined by various forms of misconduct (e.g., property crimes,
interpersonal violence, drug use, academic misconduct). CFA is an indis-
pensable analytic tool for construct validation in the social and behavioral
sciences. The results of CFA can provide compelling evidence of the con-
vergent and discriminant validity of theoretical constructs. Convergent
validity is indicated by evidence that different indicators of theoretically
similar or overlapping constructs are strongly interrelated; for example,
symptoms purported to be manifestations of a single mental disorder load
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on the same factor. Discriminant validity is indicated by results showing
that indicators of theoretically distinct constructs are not highly inter-
correlated; for example, behaviors purported to be manifestations of differ-
ent types of delinquency load on separate factors, and the factors are not
so highly correlated as to indicate that a broader construct has been erro-
neously separated into two or more factors. One of the most elegant uses
of CFA in construct validation is the analysis of multitrait–multimethod
matrices (see Chapter 6). A fundamental strength of CFA approaches to
construct validation is that the resulting estimates of convergent and dis-
criminant validity are adjusted for measurement error and an error theory
(see the “Method Effects” section, below). Thus, CFA provides a stronger
analytic framework than traditional methods that do not account for mea-
surement error (e.g., ordinary least squares approaches such as correla-
tion/multiple regression assume variables in the analysis are free of mea-
surement error).

Method Effects

Often, some of the covariation of observed measures is due to sources
other than the substantive latent factors. For instance, consider the situ-
ation where four measures of employee morale have been collected; two
indicators are employees’ self-reports (e.g., questionnaires), the other
two are obtained from supervisors (e.g., behavioral observations). It
would be presumed that the four measures are intercorrelated because
each is a manifest indicator of the underlying construct of morale. How-
ever, it is also likely that the employee self-report measures are more
highly correlated with each other than with the supervisor measures,
and vice versa. This additional covariation is not due to the underlying
construct of morale, but reflects shared method variance. A method effect
exists when additional covariation among indicators is introduced by the
measurement approach. Method effects can also occur within a single
assessment modality. For example, method effects are usually present in
questionnaires that contain some combination of positively and nega-
tively worded items (e.g., see Chapters 3 and 6). Unfortunately, EFA is
incapable of estimating method effects. In fact, the use of EFA when
method effects exist in the data can produce misleading results—that is,
yield additional factors that are not substantively meaningful but instead
stem from artifacts of measurement. In CFA, however, method effects
can be specified as part of the error theory of the measurement model.

Introduction 3



The advantages of estimating method effects within CFA include the
ability to (1) specify measurement models that are more conceptually
viable; (2) determine the amount of method variance in each indicator;
and (3) obtain better estimates of the relationships of the indicators to
the latent factors, and the relationships among latent variables (see
Chapters 5 and 6).

Measurement Invariance Evaluation

Another key strength of CFA is its ability to determine how well measure-
ment models generalize across groups of individuals or across time. Mea-
surement invariance evaluation is an important aspect of test development.
If a test is intended to be administered in a heterogeneous population, it
should be established that its measurement properties are equivalent in
subgroups of the population (e.g., gender, race). A test is said to be biased
when some of its items do not measure the underlying construct compara-
bly across groups. Test bias can be serious, such as in situations where a
given score on a cognitive ability or job aptitude test does not represent the
same true level of ability/aptitude in male and female respondents. Stated
another way, the test would be biased against women if, for a given level of
true intelligence, men tended to score several IQ units higher on the test
than women. These questions can be addressed in CFA by multiple-
groups solutions and MIMIC (multiple indicators, multiple causes) mod-
els (Chapter 7). For instance, in a multiple-groups CFA solution, the mea-
surement model is estimated simultaneously in various subgroups (e.g.,
men and women). Other restrictions are placed on the multiple-groups
solution to determine the equivalence of the measurement model across
groups; for instance, if the factor loadings are equivalent, the magnitude of
the relationships between the test items and the underlying construct (e.g.,
cognitive ability) are the same in men and women. Multiple-groups CFA
solutions are also used to examine longitudinal measurement invariance.
This is a very important aspect of latent variable analyses of repeated mea-
sures designs. In the absence of such evaluation, it cannot be determined
whether temporal change in a construct is due to true change or to
changes in the structure or measurement of the construct over time.
Multiple-groups analysis can be applied to any type of CFA or SEM model.
For example, these procedures can be incorporated into the analysis of
multitrait–multimethod data to examine the generalizability of construct
validity across groups.
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WHY A BOOK ON CFA?

It also seems appropriate to begin this volume by addressing the question,
“Is there really a need for a book devoted solely to the topic of CFA?” On
the author’s bookshelf sit 15 books on the subject of SEM. Why not go to
one of these SEM books to learn about CFA? Given that CFA is a form of
SEM, virtually all of these books provide some introduction to CFA. How-
ever, this coverage typically consists of a chapter at best. As this book will
attest, CFA is a very broad and complex topic and extant SEM books only
scratch the surface. This is unfortunate because, in applied SEM research,
most of the work deals with measurement models (CFA). Indeed, many
applied research questions are addressed using CFA as the primary ana-
lytic procedure (e.g., psychometric evaluation of test instruments, con-
struct validation). Another large proportion of SEM studies focus on struc-
tural regression models, that is, the manner in which latent factors are
interrelated. Although CFA is not the ultimate analysis in such studies, a
viable measurement model (CFA) must be established prior to evaluating
the structural (e.g., regressive) relationships among the latent variables of
interest. When poor model fit is encountered in such studies, it is more
likely that it stems from misspecifications in the measurement portion of
the model (i.e., the manner in which observed variables are related to
latent factors) than from the structural component that specifies the inter-
relationships of latent factors. This is because there are usually more
things that can go wrong in the measurement model than in the structural
model (e.g., problems in the selection of observed measures, misspecified
factor loadings, additional sources of covariation among observed mea-
sures that cannot be accounted for by the latent factors). Existing SEM
resources do not provide sufficient details on the sources of ill fit in CFA
measurement models or how such models can be diagnosed and re-
specified. Moreover, advanced applications of CFA are rarely discussed in
general SEM books (e.g., CFA with categorical indicators, scale reliability
evaluation, MIMIC models, formative indicators).

Given the importance and widespread use of CFA, this book was writ-
ten to provide an in-depth treatment of the concepts, procedures, pitfalls,
and extensions of this methodology. Although the overriding objective of
the book is to provide critical information on applied CFA that has not
received adequate coverage in the past, it is important to note that the top-
ics pertain to SEM in general (e.g., sample size/power analysis, missing
data, non-normal or categorical data, formative indicators). Thus, it is
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hoped that this book will also be a useful resource to researchers using any
form of SEM.

COVERAGE OF THE BOOK

The first five chapters of this book present the fundamental concepts and
procedures of CFA. Chapter 2 introduces the reader to the concepts and
terminology of the common factor model. The common factor model is
introduced in context of EFA. This book is not intended to be a compre-
hensive treatment of the principles and practice of EFA. However, an over-
view of the concepts and operations of EFA is provided in Chapter 2 for
several reasons: (1) most of the concepts and terminology of EFA general-
ize to CFA; (2) it will foster the discussion of the similarities and differ-
ences of EFA and CFA in later chapters (e.g., Chapter 3); and (3) in pro-
grammatic research, an EFA study is typically conducted prior to a CFA
study to develop and refine measurement models that are reasonable for
CFA (thus, the applied CFA researcher must also be knowledgeable of
EFA). An introduction to CFA is given in Chapter 3. After providing a
detailed comparison of EFA and CFA, this chapter presents the various
parameters, unique terminology, and fundamental equations of CFA mod-
els. Many other important concepts are introduced in this chapter that are
essential to the practice of CFA and that must be understood in order to
proceed to subsequent chapters—model identification, model estimation
(e.g., maximum likelihood), and goodness of model fit. Chapter 4 illus-
trates and extends these concepts using a complete example of a CFA mea-
surement model. In this chapter, the reader will learn how to program and
interpret basic CFA models using several of the most popular latent vari-
able software packages (LISREL, Mplus, Amos, EQS, CALIS). The proce-
dures for evaluating the acceptability of the CFA model are discussed. In
the context of this presentation, the reader is introduced to other impor-
tant concepts such as model misspecification and Heywood cases. Chapter
4 concludes with a section on the material that should be included in the
report of a CFA study. Chapter 5 covers the important topics of model
respecification and model comparison. It deals with the problem of poor-
fitting CFA models and the various ways a CFA model may be mis-
specified. This chapter also presents the technique of EFA within the CFA
framework, an underutilized method of developing more viable CFA mea-
surement models on the basis of EFA findings. The concepts of nested
models, equivalent models, and method effects are also discussed.
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The second half of the book focuses on more advanced or specialized
topics and issues in CFA. Chapter 6 discusses how CFA can be conducted
to analyze multitrait–multimethod (MTMM) data in the validation of
social or behavioral constructs. Although the concepts of method effects,
convergent validity, and discriminant validity are introduced in earlier
chapters (e.g., Chapter 5), these issues are discussed extensively in context
of MTMM models in Chapter 6. Chapter 7 discusses CFA models that con-
tain various combinations of equality constraints (e.g., estimation of a CFA
model with the constraint of holding two or more parameters to equal the
same value), multiple groups (e.g., simultaneous CFA in separate groups
of males and females), and mean structures (CFAs that entail the estima-
tion of the intercepts of indicators and factors). These models are dis-
cussed and illustrated in context of the analysis of measurement
invariance—that is, is the measurement model equivalent in different
groups or within the same group across time? Two different approaches to
evaluating CFA models in multiple groups are presented in detail:
multiple-groups solutions and MIMIC models.

Chapter 8 presents three other types of CFA models: higher-order
CFA, CFA approaches to scale reliability estimation, and CFA with forma-
tive indicators. Higher-order factor analysis is conducted in situations
where the researcher can posit a more parsimonious conceptual account
for the interrelationships of the factors in the initial CFA model. In the sec-
tion on scale reliability estimation, it will be seen that the unstandardized
parameter estimates of a CFA solution can be used to obtain point esti-
mates and confidence intervals of the reliability of test instruments (i.e.,
reliability estimate = the proportion of the total observed variance in a test
score that reflects true score variance). This approach has important
advantages over traditional estimates of internal consistency (Cronbach’s
alpha). Models with formative indicators contain observed measures that
“cause” the latent construct. In the typical CFA, indicators are defined as
linear functions of the latent variable, plus error; that is, indicators are
considered to be the effects of the underlying construct. In some situa-
tions, however, it may be more plausible to view the indicators as causing a
latent variable; for example, socioeconomic status is a concept determined
by one’s income, education level, job status—not the other way around.
Although formative indicators pose special modeling challenges, Chapter
8 shows how such models can be handled in CFA.

The last two chapters consider issues that must often be dealt with in
applied CFA research, but that are rarely discussed in extant SEM source-
books. Chapter 9 addresses data set complications such as how to accom-
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modate missing data and how to conduct CFA when the distributions of
continuous indicators are non-normal. Various methods of handling each
issue are discussed and illustrated (e.g., missing data: multiple imputation,
direct maximum likelihood; non-normal data: alternative statistical esti-
mators, bootstrapping, item parceling). Chapter 9 also includes a detailed
treatment of CFA with categorical outcomes (e.g., tests with binary items
such as true/false scales). In addition to illustrating the estimation and
interpretation of such models, this section demonstrates the parallels and
extensions of CFA to traditional IRT analysis. The final chapter of this
book (Chapter 10) deals with the oft overlooked topic of determining the
sample size necessary to achieve sufficient statistical power and precision
of the parameter estimates in a CFA study. Two different approaches to this
issue are presented (Satorra–Saris method, Monte Carlo method). The vol-
ume ends with an overview of two relatively new modeling possibilities
involving CFA: multilevel factor models and factor mixture models.

OTHER CONSIDERATIONS

This book was written with the applied researcher and graduate student in
mind. It is intended to be a user-friendly guide to conducting CFA with
real data sets. To achieve this goal, conceptual and practical aspects of CFA
are emphasized, and quantitative aspects are kept to a minimum (or sepa-
rated from the main text; e.g., Chapter 3). Formulas are not avoided alto-
gether, but are provided in instances where they are expected to foster the
reader’s conceptual understanding of the principles and operations of CFA.
Although this book does not require a high level of statistical acumen, a
basic understanding of correlation/multiple regression will facilitate the
reader’s passage through the occasional, more technically oriented section.

It is important that a book of this nature not be tied to a specific latent
variable software program. For this reason, most of the examples provided
in this book are accompanied with input syntax from each of the most
widely used software programs (LISREL, Mplus, Amos, EQS, CALIS). Sev-
eral comments about the examples are in order. First, readers will note that
many of the syntax examples are first discussed in context of the LISREL
program. This is not intended to imply a preference for LISREL over other
software programs. Rather, it is more reflective of the historical fact that
the etiological roots of SEM are strongly tied to LISREL. For instance, the
widely accepted symbols of the parameters and computational formulas of
a CFA model stem from LISREL notation (e.g., λ = factor loading). The
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illustrations of LISREL matrix programming allow interested readers to
more quickly understand computational aspects of CFA (e.g., using the
provided formula, how the model-implied covariance of two indicators
can be calculated on the basis of the CFA model’s parameter estimates).
Knowledge of this notation is also useful to readers who are interested in
developing a deeper quantitative understanding of CFA and SEM in more
technical sources (e.g., Bollen, 1989). However, the output from the Mplus
program is relied on heavily in various examples in the book. Again, a
preference for Mplus should not be inferred. This reflects the fact that the
results of CFA are provided more succinctly by Mplus than by other pro-
grams (concise output = concise tables in this book).

Another potential pitfall of including computer syntax examples is
the high likelihood that soon after a book goes into print, another version
of the software will be released. When this book was written, the following
versions of the software programs were current: LISREL 8.72, Mplus 3.11,
EQS 5.7b, Amos 5.0.1, and SAS/CALIS 8.2. New releases typically intro-
duce new features to the software, but do not alter the overall program-
ming framework. In terms of this book, the most probable consequence of
new software releases is that some claims about the (in)capabilities of the
programs will become outdated. However, the syntax examples should be
upwardly compatible (i.e., fully functional) with any subsequent software
releases (e.g., although LISREL 7 does not contain many of the features of
LISREL 8.72, syntax written in this version is fully operational in subse-
quent LISREL releases).

Especially in earlier chapters of this book, the computer syntax exam-
ples contain few, if any, programming shortcuts. Again, this is done to fos-
ter the reader’s understanding of CFA model specification. This is another
reason why LISREL is often used in the programming examples: that is, in
LISREL matrix-based programming, the user must specify every aspect of
the CFA model. Thus, CFA model specification is more clearly conveyed
in LISREL as compared with some programs where these specifications
occur “behind the scenes” (e.g., Mplus contains a series of defaults that
automatically specify marker indicators, free and fixed factor loadings, fac-
tor variances and covariances, and so forth, in a standard CFA model). On
a related note, many latent variable software programs (e.g., Amos,
LISREL, EQS) now contain graphical interfaces that allow the user to spec-
ify the CFA model by constructing a path diagram with a set of drawing
tools. Indeed, graphical interfaces are an increasingly popular method of
model programming, particularly with researchers new to CFA and SEM.
The primary reason why graphical input is not discussed in this book is
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that it does not lend itself well to the written page. Yet there are other rea-
sons why syntax programming can be more advantageous. For instance, it
is often quicker to generate a CFA solution from a syntax program than by
constructing a path diagram in a drawing editor. In addition, many of the
advanced features of model specification are more easily invoked through
syntax. Users who understand the logic of syntax programming (either
matrix- or equation-based syntax operations) are able to move from one
latent variable software package to another much more quickly and easily
than users who are adept only in the use of a graphical interface of a given
software program.

In an attempt to make the illustrations more provocative to the
applied researcher, most of the examples in this book are loosely based
on findings or test instruments in the extant literature. The examples
are drawn from a variety of domains within the social and behavioral
sciences—clinical psychology, personality psychology, social psychology,
industrial/organizational psychology, and sociology. In some instances, the
examples use actual research data, but in many cases the data were artifi-
cially generated strictly for the purposes of illustrating a given concept.
Regardless of the origin of the data, the examples should not be used to
draw substantive conclusions about the research domain or test instru-
ment in question.

Many of the examples in this book use a variance–covariance matrix
as input data (specifically, the correlations and standard deviations of the
indicators are inputted, from which the program generates the sample
variance–covariance matrix). This was done to allow interested readers to
replicate examples directly from the information provided in the figures
and tables of the book. Although matrix input is used as a convenience
feature in this book, it is not necessarily the best method of reading data
into an analysis. All leading latent variable programs are capable of reading
raw data as text files, and many can read data saved in other software for-
mats (e.g., SPSS .sav files, Microsoft Excel files). There are several advan-
tages of using raw data as input. First, it is more convenient because the
user does not need to compute the input matrices prior to conducting the
latent variable analysis. Second, the input data are more precise when the
software program computes the input matrices from raw data (user-
generated matrices usually contain rounding error). Third, there are some
situations where raw data must be analyzed; for instance, models that have
missing, non-normal, or categorical data. Some sections of this book (e.g.,
Chapter 9) illustrate how raw data are read into the analysis. The inter-
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ested reader can download the files used in these and other examples from
the book’s companion website (http://people.bu.edu/tabrown/).

SUMMARY

This chapter provided a general overview of the nature and purposes of
CFA, including some of the fundamental differences between EFA and
CFA. The ideas introduced in this chapter provide the background for a
more detailed discussion of the nature of the common factor model and
EFA, the subject of Chapter 2. It was noted that this book is intended to be
a user-friendly guide to conducting CFA in real data sets, aimed at students
and applied researchers who do not have an extensive background in
quantitative methods. Accordingly, practical and conceptual aspects of
CFA will be emphasized over mathematics and formulas. In addition, most
of the chapters are centered on data-based examples drawn from various
realms of the social and behavioral sciences. The overriding rationale of
these examples was discussed (e.g., use of software programs, method of
data input) to set the stage for their use in subsequent chapters.
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2

The Common Factor Model
and Exploratory Factor Analysis

This chapter introduces the reader to the concepts, terminology, and
basic equations of the common factor model. Both exploratory factor
analysis (EFA) and confirmatory factor analysis (CFA) are based on the
common factor model. In this chapter, the common factor model is dis-
cussed primarily in the context of EFA. Nonetheless, most of the con-
cepts and terminology (e.g., common and unique variances, factor
loadings, communalities) of EFA are also used in CFA. This chapter dis-
cusses some of the fundamental similarities and differences of EFA and
CFA. In applied research, EFA and CFA are often conducted in con-
junction with one another. For instance, CFA is frequently used in the
later stages of scale development after the factor structure of a testing
instrument has been explored and refined by EFA. Thus, because the
applied CFA researcher must have a working knowledge of EFA, the
methods of conducting an EFA are reviewed in this chapter. This over-
view is also provided to allow more detailed comparisons of EFA and
CFA in later chapters.

OVERVIEW OF THE COMMON FACTOR MODEL

Since its inception a century ago (Spearman, 1904, 1927), factor analysis
has become one of the most widely used multivariate statistical procedures
in applied research endeavors across a multitude of domains (e.g., psy-
chology, education, sociology, management, public health). The funda-
mental intent of factor analysis is to determine the number and nature of
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latent variables or factors that account for the variation and covariation
among a set of observed measures, commonly referred to as indicators.
Specifically, a factor is an unobservable variable that influences more than
one observed measure and that accounts for the correlations among these
observed measures. In other words, the observed measures are inter-
correlated because they share a common cause (i.e., they are influenced by
the same underlying construct); if the latent construct was partialed out,
the intercorrelations among the observed measures would be zero.1 Thus,
factor analysis attempts a more parsimonious understanding of the co-
variation among a set of indicators because the number of factors is less
than the number of measured variables.

In applied research, factor analysis is most commonly used in psycho-
metric evaluations of multiple-item testing instruments (e.g., question-
naires; cf. Floyd & Widaman, 1995). For example, a researcher may have
generated 20 questionnaire items that he or she believes are indicators of
the unidimensional construct of self-esteem. In the early stages of scale
development, the researcher might use factor analysis to examine the plau-
sibility of this assumption (i.e., the ability of a single factor to account for
the intercorrelations among the 20 indicators) and to determine if all 20
items are reasonable indicators of the underlying construct of self-esteem
(i.e., how strongly is each item related to the factor?). In addition to psy-
chometric evaluation, other common uses for factor analysis include con-
struct validation (e.g., obtaining evidence of convergent and discriminant
validity by demonstrating that indicators of selected constructs load onto
separate factors in the expected manner; e.g., Brown, Chorpita, & Barlow,
1998) and data reduction (e.g., reducing a larger set of intercorrelated
indicators to a smaller set of composite variables, and using these
composites—i.e., factor scores—as the units of analysis in subsequent sta-
tistical tests; e.g., Cox, Walker, Enns, & Karpinski, 2002).

These concepts emanate from the common factor model (Thurstone,
1947), which postulates that each indicator in a set of observed measures
is a linear function of one or more common factors and one unique factor.
Thus, factor analysis partitions the variance of each indicator (derived
from the sample correlation/covariance matrix that is used as input for the
analysis) into two parts: (1) common variance, or the variance accounted
for by the latent factor, which is estimated on the basis of variance shared
with other indicators in the analysis; and (2) unique variance, which is a
combination of reliable variance that is specific to the indicator (i.e., sys-
tematic latent factors that influence only one indicator) and random error
variance (i.e., measurement error or unreliability in the indicator). There
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are two main types of analyses based on the common factor model: explor-
atory factor analysis (EFA) and confirmatory factor analysis (CFA; Jöreskog,
1969, 1971a). Both EFA and CFA aim to reproduce the observed relation-
ships among a group of indicators with a smaller set of latent variables, but
they differ fundamentally by the number and nature of a priori specifica-
tions and restrictions made on the factor model. EFA is a data-driven
approach such that no specifications are made in regard to the number of
latent factors (initially) or to the pattern of relationships between the com-
mon factors and the indicators (i.e., the factor loadings). Rather, the
researcher employs EFA as an exploratory or descriptive technique to
determine the appropriate number of common factors and to uncover
which measured variables are reasonable indicators of the various latent
dimensions (e.g., by the size and differential magnitude of factor loadings).
In CFA, the researcher specifies the number of factors and the pattern of
indicator–factor loadings in advance, as well as other parameters such as
those bearing on the independence or covariance of the factors and indica-
tor unique variances. The prespecified factor solution is evaluated in terms
of how well it reproduces the sample correlation (covariance) matrix of
the measured variables. Thus, unlike EFA, CFA requires a strong empirical
or conceptual foundation to guide the specification and evaluation of the
factor model. Accordingly, EFA is typically used earlier in the process of
scale development and construct validation, whereas CFA is used in later
phases after the underlying structure has been established on prior empiri-
cal (EFA) and theoretical grounds. Other important differences between
EFA and CFA are discussed in Chapter 3.

A brief applied example is used to illustrate some of the key concepts
of the common factor model. In this basic example, four behavioral obser-
vation ratings (D1–D4) have been collected on 300 individuals admitted to
an inpatient psychiatric facility. The four ratings are hopelessness (D1),
feelings of worthlessness/guilt (D2), psychomotor retardation (D3), and
sleep disturbance (D4). As shown in Table 2.1, these four clinical ratings
(indicators) are moderately intercorrelated. It is conjectured that each of
these ratings is a manifest indicator of the latent construct of depression;
that is, each of the observed symptoms (e.g., hopelessness, worthlessness)
has the shared influence of depression, the single latent variable (factor)
that accounts for the intercorrelations among these observed measures.
The only reason the indicators are correlated is that they share the com-
mon cause of depression; if this latent variable was partialed out, no rela-
tionship among these indicators would be seen.
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Using the sample correlations presented in Table 2.1 as input, a factor
analysis is conducted using the EFA routines provided in SPSS (FACTOR)
and SAS (PROC FACTOR; see Table 2.2). For reasons noted later in this
chapter, only a one-factor solution can be pursued. Because EFA uses cor-
relations as the units of analysis, it can be run in SPSS and SAS by embed-
ding the sample correlation matrix in the body of the syntax (as shown in
Table 2.2), although both programs can generate this matrix by reading
raw input data files. The procedures of EFA are discussed later in this
chapter (e.g., methods of factor extraction and selection), but for purposes
of this illustration, consider the selected results of the analysis presented
in Table 2.2. Of particular interest is the output under the heading “Factor
Matrix,” which provides the factor loadings for the four clinical ratings. In
EFA, the factor loadings are completely standardized estimates of the
regression slopes for predicting the indicators from the latent factor, and
thus are interpreted along the lines of standardized regression (β) or corre-
lation (r) coefficients as in multiple regression/correlational analysis (cf.
Cohen, Cohen, West, & Aiken, 2003).2 For instance, the factor loading
estimate for D1 (hopelessness) was .828, which would be interpreted as
indicating that a standardized score increase in the latent factor (Depres-
sion) is associated with an .828 standardized score increase in hopeless-
ness. Squaring the factor loadings provides the estimate of the amount of
variance in the indicator accounted for by the latent variable (e.g., .8282 =
68.5% variance explained). In factor analysis, the amount of variance in
the indicator explained by the common factors is often referred to as the
communality (shown in the SPSS output at the bottom of Table 2.1). Thus,
for the D1 (hopelessness) indicator, the factor model estimates that 68.5%
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TABLE 2.1. Intercorrelations among Four
Behavioral Observation Ratings
of Depression

D1 D2 D3 D4

D1 1.00

D2 0.70 1.00

D3 0.65 0.66 1.00

D4 0.62 0.63 0.60 1.00

Note. N = 300. D1 = hopelessness; D2 = feel-
ings of worthlessness/guilt; D3 = psychomotor
retardation; D4 = sleep disturbance.
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TABLE 2.2. SPSS and SAS Syntax and Selected Output
for a Basic One-Factor Model

SPSS Syntax

MATRIX DATA VARIABLES=ROWTYPE_ D1 D2 D3 D4.
BEGIN DATA.
N 300 300 300 300
COR 1.0
COR .70 1.0
COR .65 .66 1.0
COR .62 .63 .60 1.0
END DATA.
FACTOR
/MATRIX=IN(COR=*)
/MISSING LISTWISE
/ANALYSIS D1 D2 D3 D4
/PRINT INITIAL EXTRACTION
/CRITERIA FACTORS(1) ITERATE(25)
/EXTRACTION ML
/ROTATION NOROTATE.

SAS Syntax

data sm (type=CORR);
input _type_ $ _name_ $ D1 D2 D3 D4;

cards;
n     . 300     .     .      .
corr  D1 1.00   .     .      .
corr  D2 0.70  1.00   .      .
corr  D3 0.65  0.66   1.00   .
corr  D4 0.62  0.63   0.60  1.00
;
proc factor data=sm method=ml nfactors=1 scree;
run;

Selected Output (SPSS)

Initial Statistics:

Variable Communality * Factor Eigenvalue Pct of Var Cum Pct
*

D1 .57811 * 1 2.93118 73.3 73.3
D2 .59175 * 2 .41039 10.3 83.5
D3 .53077 * 3 .35924 9.0 92.5
D4 .48795 * 4 .29919 7.5 100.0

Test of fit of the    1-factor model:

Chi-square statistic:     .2031, D.F.:   2, Significance:     .9035

(cont.)



of its total variance is common variance (variance explained by the latent
variable of Depression), whereas the remaining 31.5% (i.e., 1 – .685 =
.315) is unique variance. It was stated earlier that unique variance is some
combination of specific factor and measurement error variance. It is
important to note that EFA and CFA do not provide separate estimates of
specific variance and error variance.

A path diagram of the one-factor measurement model is provided in
Figure 2.1. The first part of the diagram presents the solution using com-
mon symbols for the various elements of factor models (using LISREL
latent Y variable notation), and the second part of the diagram replaces
these elements with the sample estimates obtained from the EFA presented
in Table 2.1. Following the conventions of factor analysis and structural
equation modeling (SEM), the latent factor of Depression is depicted by a
circle or an oval, whereas the four clinical ratings (indicators) are repre-
sented by squares or rectangles. The unidirectional arrows (→) represent
the factor loadings (λ, or lambda), which are the regression slopes (direct
effects) for predicting the indicators from the latent factor (η, or eta).
These arrows are also used to relate the unique variances (ε, or epsilon) to
the indicators.3

A fundamental equation of the common factor model is

yj = λj1η 1 + λj2η 2 + . . . + λjmη m + εj (2.1)

where yj represents the jth of p indicators (in the case p = 4; D1, D2, D3,
D4) obtained from a sample of n independent subjects (in this case, n =
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TABLE 2.2. (cont.)

Factor Matrix:
Factor  1

D1              .82822
D2              .84090
D3              .78766
D4              .75228

Final Statistics:

Variable Communality * Factor SS Loadings Pct of Var Cum Pct
*

D1 .68595 * 1 2.57939 64.5 64.5
D2 .70712 *
D3 .62040 *
D4 .56592 *



300), λjm represents the factor loading relating variable j to the mth factor
η (in the case m = 1; the single factor of Depression), and εj represents the
variance that is unique to indicator yj and is independent of all η s and all
other εs. As will be seen in subsequent chapters, similar notation is used to
represent some of the equations of CFA. In this simple factor solution
entailing a single latent factor (η1) and four indicators, the regression
functions depicted in Figure 2.1 can be summarized by four separate equa-
tions:

D1 = λ11η 1 + ε1 (2.2)
D2 = λ21η 1 + ε2

D3 = λ31η 1 + ε3

D4 = λ41η 1 + ε4
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FIGURE 2.1. Path diagram of the one-factor model.



This set of equations can be summarized in a single equation that
expresses the relationships among observed variables (y), latent factors
(η ), and unique variances (ε):

y = Λyη + ε (2.3)

or in expanded matrix form:

Σ = ΛyΨΛ′y + Θ ε (2.4)

where Σ is the p × p symmetric correlation matrix of p indicators, Λy is the
p × m matrix of factor loadings λ (in this case, a 4 × 1 vector), Ψ is the
m × m symmetric correlation matrix of the factor correlations (1 × 1), and
Θ ε is the p × p diagonal matrix of unique variances ε (p = 4). In accord
with matrix algebra, matrices are represented in factor analysis and SEM
by uppercase Greek letters (e.g., Λ, Ψ, and Θ) and specific elements of
these matrices are denoted by lowercase Greek letters (e.g., λ, ψ, and ε).
With minor variations, these fundamental equations can be used to calcu-
late various aspects of the sample data from the factor analysis parameter
estimates, such as the variances, covariances, and means of the input indi-
cators (the last of these can be conducted in the context of CFA with mean
and covariance structures; see Chapter 7). For example, the following
equation reproduces the variance in the D1 indicator:

VAR(D1) = σ11 = λ11
2ψ11 + ε1 (2.5)

= .8282(1) + .315
= 1.00

where ψ11 = the variance of the factor η 1, and ε1 = the unique variance of
D1. Note that both ψ11 and σ11 equal 1.00 because the EFA model is com-
pletely standardized; that is, when variables are standardized, their vari-
ances equal 1.0. Similarly, the model estimate of the covariance (correla-
tion) of D1 and D2 can be obtained from the following equation:

COV(D1, D2) = σ 21 = λ11ψ11λ21 (2.6)
= (.828)(1)(.841)
= .696

Because the solution is completely standardized, this covariance would be
interpreted as the factor model estimate of the sample correlation of D1
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and D2. In other words, the model-implied correlation of the indicators is
the product of their completely standardized factor loadings. Note that the
sample correlation of D1 and D2 was .70, which is very close to the factor
model-implied correlation of .696. As discussed in further detail in Chap-
ter 3, the acceptability of factor analysis models is determined in large part
by how well the parameter estimates of the factor solution (e.g., the factor
loadings) are able to reproduce the observed relationships among the
input variables. The current illustration should exemplify the point made
earlier that common variance (i.e., variance explained by the latent factors
as reflected by factor loadings and communalities) is estimated on the
basis of the shared variance among the indicators used in the analysis. EFA
generates a matrix of factor loadings (Λ) that best explain the correlations
among the input indicators.

PROCEDURES OF EFA

Although a full description of EFA is beyond the scope of this book,
an overview of its concepts and procedures is helpful to make later com-
parisons to CFA. The reader is referred to Fabrigar, Wegener, MacCallum,
and Strahan (1999), Floyd and Widaman (1995), and Preacher and
MacCallum (2003) for detailed guidelines on conducting EFA in applied
data sets.

As stated earlier, the overriding objective of EFA is to evaluate the
dimensionality of a set of multiple indicators (e.g., items from a question-
naire) by uncovering the smallest number of interpretable factors needed
to explain the correlations among them. Whereas the researcher must ulti-
mately specify the number of factors, EFA is an “exploratory” analysis
because no a priori restrictions are placed on the pattern of relationships
between the observed measures and the latent variables. This is a key dif-
ference between EFA and CFA. In CFA, the researcher must specify in
advance several key aspects of the factor model such as the number of fac-
tors and patterns of indicator–factor loadings.

After determining that EFA is the most appropriate analytic technique
for the empirical question at hand, the researcher must decide which indi-
cators to include in the analysis and determine if the size and the nature of
the sample are suitable for the analysis (for more details on these issues,
see Chapters 9 and 10). Other procedural aspects of EFA include (1) selec-
tion of a specific method to estimate the factor model; (2) selection of the
appropriate number of factors; (3) in the case of models that have more
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than one factor, selection of a technique to rotate the initial factor matrix
to foster the interpretability of the solution; and (4) if desired, selection of
a method to compute factor scores.

Factor Extraction

There are many methods that can be used to estimate the common factor
model such as maximum likelihood, principal factors, weighted least
squares, unweighted least squares, generalized least squares, imaging anal-
ysis, minimum residual analysis, and alpha factoring, to name just some.
For EFA with continuous indicators (i.e., observed measures that approxi-
mate an interval-level measurement scale), the most frequently used factor
extraction methods are maximum likelihood (ML) and principal factors
(PF). ML is also the most commonly used estimation method in CFA, and
its fundamental properties are discussed in Chapter 3. A key advantage of
the ML estimation method is that it allows for a statistical evaluation of
how well the factor solution is able to reproduce the relationships among
the indicators in the input data; that is, how closely do the correlations
among the indicators predicted by the factor analysis parameters approxi-
mate the relationships seen in the input correlation matrix (see Eq. 2.6)?
This feature is very helpful for determining the appropriate number of fac-
tors. However, as discussed in Chapter 9, ML estimation requires the
assumption of multivariate normal distribution of the variables. If the
input data depart substantially from a multivariate normal distribution,
important aspects of the results of an ML-estimated EFA model can be dis-
torted and not trustworthy (e.g., goodness of model fit, significance tests
of model parameters). Another potential disadvantage of ML estimation is
its occasional tendency to produce “improper solutions.” An improper
solution exists when a factor model does not converge on a final set of
parameter estimates, or produces an “out of range” estimate such as an
indicator with a communality above 1.0. However, PF has the strong
advantages of being free of distributional assumptions and of being less
prone to improper solutions than ML (Fabrigar et al., 1999). Unlike ML,
PF does not provide goodness-of-fit indices useful in determining the suit-
ability of the factor model and the number of latent variables. Thus, PF
might be preferred in instances where marked non-normality is evident in
the observed measures or perhaps when ML estimation produces an
improper solution. However, as discussed later in this book, the presence
of improper solutions may be a sign of more serious problems, such as a
poorly specified factor model or a poorly behaved input data matrix. If dis-
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tributional assumptions hold, ML might be favored because of its ability to
produce a wide range of fit indices that guide other important aspects of
the factor analytic procedure. As noted in Chapter 3, ML is a full informa-
tion estimator that provides standard errors that can be used for statistical
significance testing and confidence intervals of key parameters such as fac-
tor loadings and factor correlations. Strategies for dealing with non-
normal, continuous outcomes and categorical indicators are discussed in
Chapter 9.

Although related to EFA, principal components analysis (PCA) is fre-
quently miscategorized as an estimation method of common factor analy-
sis. Unlike the estimators discussed in the preceding paragraph (ML, PF),
PCA relies on a different set of quantitative methods that are not based on
the common factor model. PCA does not differentiate common and unique
variance. Rather, PCA aims to account for the variance in the observed
measures rather than explain the correlations among them. Thus, PCA is
more appropriately used as a data reduction technique to reduce a larger
set of measures to a smaller, more manageable number of composite vari-
ables to use in subsequent analyses. However, some methodologists have
argued that PCA is a reasonable or perhaps superior alternative to EFA, in
view of the fact that PCA possesses several desirable statistical properties
(e.g., computationally simpler, not susceptible to improper solutions,
often produces results similar to those of EFA, ability of PCA to calculate a
participant’s score on a principal component whereas the indeterminate
nature of EFA complicates such computations). Although debate on this
issue continues, Fabrigar et al. (1999) provide several reasons in opposi-
tion to the argument for the place of PCA in factor analysis. These authors
underscore the situations where EFA and PCA produce dissimilar results;
for instance, when communalities are low or when there are only a few
indicators of a given factor (cf. Widaman, 1993). Regardless, if the overrid-
ing rationale and empirical objectives of an analysis are in accord with the
common factor model, then it is conceptually and mathematically incon-
sistent to conduct PCA; that is, EFA is more appropriate if the stated objec-
tive is to reproduce the intercorrelations of a set of indicators with a
smaller number of latent dimensions, recognizing the existence of mea-
surement error in the observed measures. Floyd and Widaman (1995)
make the related point that estimates based on EFA are more likely to gen-
eralize to CFA than are those obtained from PCA in that, unlike PCA, EFA
and CFA are based on the common factor model. This is a noteworthy
consideration in light of the fact that EFA is often used as a precursor to
CFA in scale development and construct validation. A detailed demonstra-
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tion of the computational differences between PCA and EFA can be found
in multivariate and factor analytic textbooks (e.g., Tabachnick & Fidell,
2001).

Factor Selection

Next, the factor analysis is run using the selected estimation method (e.g.,
ML, PF). The results of the initial analysis are used to determine the
appropriate number of factors to be extracted in subsequent analyses. This
is often considered to be the most crucial decision in EFA because
“underfactoring” (selecting too few factors) and “overfactoring” (selecting
too many factors) can severely compromise the validity of the factor model
and its resulting estimates (e.g., introduce considerable error in the factor
loading estimates), although some research suggests that the consequences
of overfactoring are less severe than those of underfactoring (cf. Fabrigar
et al., 1999). Despite the fact that EFA is an exploratory or descriptive
technique by nature, the decision about the appropriate number of factors
should be guided by substantive considerations, in addition to the statisti-
cal guidelines discussed below. For instance, the validity of a given factor
should be evaluated in part by its interpretability; for example, does a fac-
tor revealed by the EFA have substantive importance? A firm theoretical
background and previous experience with the variables will strongly foster
the interpretability of factors and the evaluation of the overall factor
model. Moreover, factors in the solution should be well defined—that is,
comprised of several indicators that strongly relate to it. Factors that are
represented by two or three indicators may be underdetermined (have
poor determinacy, see below) and highly unstable across replications. The
solution should also be evaluated with regard to whether “trivial” factors
exist in the data; for instance, factors based on differential relationships
among indicators that stem from extraneous or methodological artifacts
(e.g., method effects arising from subsets of very similarly worded or
reverse-worded items; see Chapter 5).

It is also important to note that the number of factors (m) that can be
extracted by EFA is limited by the number of observed measures (p) that
are submitted to the analysis. The upper limit on the number of factors
varies across estimation techniques. For instance, in EFA using PF, the
maximum number of factors that can be extracted is p – 1.4 In ML EFA,
the number of parameters that are estimated in the factor solution (a)
must be equal to or less than the number of elements (b) in the input cor-
relation or covariance matrix (i.e., a ≤ b). As the number of factors (m)
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increases, so does the number of estimated parameters (a) in the solution.
The fact that the maximum number of factors is mathematically limited by
the input data can be problematic for ML analyses that use a small set of
indicators; that is, the data may not support extraction of the number of
factors that are posited to exist on conceptual grounds. For example,
because only four observed measures (p = 4) were involved, it was possible
to extract only one factor (m = 1) in the EFA presented in Table 2.2.
Although a two-factor solution may be conceptually viable (e.g., Cognitive
Depression: D1, D2; Somatic Depression: D3, D4), the number of parame-
ters associated with a two-factor model (b) would exceed the number of
pieces of information in the input correlation matrix (a); a and b can be
readily calculated by the following equations:

a = (p ∗ m) + [(m ∗ (m + 1)] / 2) + p – m2 (2.7)

b = [(p ∗ (p + 1)] / 2 (2.8)

where p = number of observed variables (indicators), and m = number of
factors.

Solving for b indicates that the input matrix contains 10 pieces of
information (see Table 2.1), corresponding to the 6 correlations in the off-
diagonal and the 4 standardized variances on the diagonal; that is, b = (4 ∗
5) / 2 = 10. Solving for a (when m = 1) indicates that there are 8 parameters
that are estimated in a one-factor solution; that is, a = (4 ∗ 1) + [(1 ∗ 2) / 2)]
+ 4 – 1 = 4 + 1 + 4 – 1 = 8. Because the number of elements of the input
matrix (a = 10) is greater than the number of parameters (b = 8), a single
factor can be extracted from the data (as seen in Table 2.2, the degrees of
freedom associated with the χ2 fit statistic is 2, corresponding to the differ-
ence a – b, 10 – 8 = 2; see Chapter 3). However, two factors cannot be
extracted, because the number of parameters to be estimated in this model
exceeds the number of elements of the input matrix by one, that is, a =
(4 ∗ 2) + [(2 ∗ 3) / 2)] + 4 – 4 = 8 + 3 + 4 – 4 = 11.

Each aspect of the equation used to solve for a corresponds to specific
parameters and mathematical restrictions in the EFA model (cf. Eq. 2.4).
The first aspect, (p ∗ m), indicates the number of factor loadings (Λy). The
second aspect, ([m ∗ (m + 1)] / 2), indicates the number of factor variances
and covariances (Ψ). The third aspect, p, corresponds to the number of
residual variances (θε). The final aspect, m2, reflects the number of restric-
tions that are required to identify the EFA model (e.g., mathematically
convenient restrictions, which include fixing factor variances to unity).
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For example, as depicted in Figure 2.1, in the one-factor model there are
four factor loadings (p ∗ m), one factor variance ([m ∗ (m + 1)] / 2), and
four indicator residuals (p); however, for identification purposes, the fac-
tor variance is fixed to 1.0 (m2 = 12 = 1) and thus the model contains eight
estimated parameters. A two-factor solution would entail eight factor load-
ings (4 ∗ 2), two factor variances and one factor covariance [(2 ∗ 3) / 2],
and four residual variances (total number of parameters = 15). After sub-
tracting the identifying restrictions (m2 = 22 = 4; 15 – 4 = 11), the number
of parameters to be estimated in the two-factor model (b = 11) still exceeds
the pieces in the input matrix (a = 10). Thus, two factors cannot be
extracted from the data by ML when p = 4.

Especially when an estimation procedure other than ML is used (e.g.,
PF), factor selection is often guided by the eigenvalues generated from
either the unreduced correlation matrix (R; i.e., the input correlation matrix
with unities—1.0s—in the diagonal) or the reduced correlation matrix (Rr;
i.e., the correlation matrix with communality estimates in the diagonal).
For example, the selected SPSS output in Table 2.2 provides eigenvalues
from the unreduced correlation matrix under the heading “Initial Statis-
tics.”5 Most multivariate procedures such as EFA rely on eigenvalues and
their corresponding eigenvectors because they summarize variance in a
given correlation or variance/covariance matrix. The calculation of eigen-
values and eigenvectors is beyond the scope of this chapter (for an infor-
mative illustration, see Tabachnick & Fidell, 2001), but for practical pur-
poses, it is useful to view eigenvalues as representing the variance in the
indicators explained by the successive factors. This is illustrated in the
final two sections of Table 2.2; specifically, the eigenvalue corresponding
to the single factor that was extracted to account for the interrelationships
of the four ratings of clinical depression. On the SPSS printout, this
eigenvalue is listed under the heading “SS Loadings” and equals 2.579.
Calculating the sum of squares of the four factor loadings (i.e., .828222 +
. . . + .752282 = 2.579) provides the eigenvalue for this factor. Dividing this
eigenvalue by the total variance of the input matrix (because indicators are
standardized, total variance is equal to the number of input measures, p)
yields the proportion of variance in the indicators that is accounted for by
the factor model (i.e., 2.579 / 4 = .645) as also denoted under the heading
“Pct of Var” (64.5%) in the “Final Statistics” section of the SPSS printout in
Table 2.2.

The previous paragraph discussed eigenvalues (e.g., 2.579) that were
derived from the reduced correlation matrix (Rr) produced by the EFA
solution. The SPSS printout (Table 2.2) also presents eigenvalues for R,
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listed under the “Initial Statistics” heading (i.e., 2.93, .410, .359, .299). In
line with the notion that eigenvalues communicate variance, note that the
sum of the eigenvalues for R is 4 (i.e., total variance = number of input
indicators, p). As was the case for eigenvalues associated with Rr, dividing
the eigenvalue by 4 yields an estimate of explained variance (e.g., 2.93 / 4
= .733; see Table 2.2). Thus, eigenvalues guide the factor selection process
by conveying whether a given factor explains a considerable portion of the
total variance of the observed measures.

Three commonly used factor selection procedures are based on
eigenvalues. They are (1) the Kaiser–Guttman rule; (2) the scree test; and
(3) parallel analysis. The Kaiser–Guttman rule (also referred to as “the Kai-
ser criterion,” or “the eigenvalues > 1.0 rule”) is very straightforward: (1)
obtain the eigenvalues derived from the input correlation matrix, R (as
noted by Fabrigar et al., 1999, researchers occasionally make the mistake
of using eigenvalues of the reduced correlation matrix, Rr); (2) determine
how many eigenvalues are greater than 1.0; and (3) use that number to
determine the number of nontrivial latent dimensions that exist in the
input data. As seen in the “Initial Statistics” section of the selected SPSS
output provided in Table 2.2, a single eigenvalue from the input correla-
tion matrix (R) was above 1.0 (i.e., 2.93); thus, the Kaiser–Guttman rule
would suggest a unidimensional latent structure.

The logic of the Kaiser–Guttman rule is that when an eigenvalue is
less than 1.0, the variance explained by a factor is less than the variance of
a single indicator. Recall that eigenvalues represent variance, and that EFA
standardizes both the latent and observed variables (e.g., the variance that
each standardized input variable contributes to the factor extraction is
1.0). Thus, because a goal of EFA is to reduce a set of input indicators (the
number of latent factors should be smaller than the number of input indi-
cators), if an eigenvalue is less than 1.0, then the corresponding factor
accounts for less variance than the indicator (whose variance equals 1.0).
The Kaiser–Guttman rule has wide appeal because of its simplicity and
objectivity; in fact, it is the default in popular statistical software packages
such as SPSS. Nevertheless, many methodologists have criticized this pro-
cedure because it can result in either overfactoring or underfactoring, and
because of its somewhat arbitrary nature; for example, sampling error in
the input correlation matrix may result in eigenvalues of .99 and 1.01, but
nonetheless the Kaiser–Guttman rule would indicate the latter is an
important factor whereas the former is not.

Another popular approach, called the scree test (Cattell, 1966), also
uses the eigenvalues that can be taken from either the input or reduced
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correlation matrix (although Fabrigar et al., 1999, note reasons why scree
tests based Rr might be preferred). To provide a more realistic illustration
of this procedure, a larger data set is used (p = 20). As shown in Figure 2.2,
the scree test employs a graph whereby the eigenvalues form the verti-
cal axis and the factors form the horizontal axis. The graph is in-
spected to determine the last substantial decline in the magnitude of the
eigenvalues—or the point where lines drawn through the plotted eigen-
values change slope. A limitation of this approach is that the results of the
scree test may be ambiguous (e.g., no clear shift in the slope) and open to
subjective interpretation. This is evident in Figure 2.2 where the results
could be interpreted as indicating either a four- or five-factor solution.
However, as noted by Gorsuch (1983), the scree test performs reasonably
well under conditions such as when the sample size is large and when
well-defined factors are present in the data.

Another eigenvalue-based procedure for guiding factor selection is
parallel analysis (Horn, 1965; Humphreys & Montanelli, 1975). The
approach is based on a scree plot of the eigenvalues obtained from the
sample data against eigenvalues that are estimated from a data set of ran-
dom numbers (i.e., the means of eigenvalues produced by multiple sets of
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completely random data).6 Both the observed sample and random data
eigenvalues are plotted, and the appropriate number of factors is indicated
by the point where the two lines cross. Thus, factor selection is guided by
the number of real eigenvalues greater than the eigenvalues generated
from the random data; that is, if the “real” factor explains less variance
than the corresponding factor obtained from random numbers, it should
not be included in the factor analysis. The term “parallel analysis” refers to
the fact that the random data set(s) should parallel aspects of the actual
research data (e.g., sample size, number of indicators). The rationale of
parallel analysis is that the factor should account for more variance than is
expected by chance (as opposed to more variance than is associated with a
given indicator, per the logic of the Kaiser–Guttman rule). Using the 20-
item data set, parallel analysis suggests four factors (see Figure 2.3). After
the eigenvalue for the fourth factor, the eigenvalues from the randomly
generated data (averages of 50 replications) exceed the eigenvalues of the
research data. Although parallel analysis frequently performs well, like the
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scree test it is sometimes associated with somewhat arbitrary outcomes; for
instance, chance variation in the input correlation matrix may result in
eigenvalues falling just above or below the parallel analysis criterion. A
practical drawback of the procedure is that it is not available in major sta-
tistical software packages such as SAS and SPSS, although parallel analysis
is an option in the Stata software and various shareware programs found
on the Internet (e.g., O’Connor, 2001). In addition, Hayton, Allen, and
Scarpello (2004) have provided syntax for conducting parallel analysis in
SPSS, although the user must save and summarize the eigenvalues gener-
ated from random data outside of SPSS.

As noted above, when a factor estimation procedure other than ML is
employed, eigenvalue-based procedures such as application of the Kaiser–
Guttman rule, the scree test, and parallel analysis can be used to assist in
factor selection. Although these methods can also assist in determining the
appropriate number of factors in ML factor analysis, ML has the advantage
of being a full information estimator that allows for goodness-of-fit evalua-
tion and statistical inference such as significance testing and confidence
interval estimation. ML is covered extensively in later chapters, so only a
brief overview relevant to EFA is provided here. It is helpful to consider
ML EFA as a special case of SEM. For example, like CFA and SEM, ML
EFA provides goodness-of-fit information that can be used to determine
the appropriate number of factors. Various goodness-of-fit statistics (such
as χ2, and the root mean square of approximation, RMSEA; Steiger & Lind,
1980) provide different pieces of information about how well the parame-
ters of the factor model are able to reproduce the sample correlations. As
seen earlier in this chapter, the factor loadings of D1 and D2 yielded a pre-
dicted correlation of .696 (i.e., Eq. 2.6), which is very similar to the corre-
lation of these indicators in the sample data (i.e., .70; see correlation
between D1 and D2 in Table 2.1). If the remaining observed relationships
in the input matrix are reproduced as well by the factor loading estimates
in this solution, descriptive fit statistics such the χ2 and RMSEA will indi-
cate that the one-factor model provided a good fit to the data. As shown in
Table 2.2, the SPSS output provides a χ2 test of the fit of the one-factor
solution. Because the χ2 was statistically nonsignificant, χ2(2) = .20,
p = .90, it could be concluded that the one-factor model provides a reason-
able fit to the data. The nonsignificant χ2 test suggests the correlation
matrix predicted by the factor model parameters does not differ from the
sample correlation matrix. However, it will be seen in Chapter 3 that χ2

has serious limitations, and thus it should not be used as the sole index of
overall model fit.
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The goal of goodness-of-fit approaches is to identify the solution that
reproduces the observed correlations considerably better than more parsi-
monious models (i.e., models involving fewer factors) but is able to repro-
duce these observed relationships equally or nearly as well as more com-
plex solutions (i.e., models with more factors). Accordingly, the researcher
conducting ML EFA is apt to estimate the factor model several times (spec-
ifying different numbers of factors) to compare the fit of the solutions. As
in other approaches (e.g., eigenvalue-based methods), factor selection
should not be determined by goodness of fit alone, but should be strongly
assisted by substantive considerations (e.g., prior theory and research evi-
dence) and other aspects of the resulting solution. Although a factor solu-
tion might provide a reasonable fit to the data, it may be unacceptable for
other reasons such as the presence of factors that have no strong concep-
tual basis or utility (e.g., factors arising from methodological artifacts; see
Chapter 5), poorly defined factors (e.g., factors in which only one or two
indicators have strong primary loadings), indicators that do not have
salient loadings on any factor, or indicators that have high loadings on
multiple factors. Again, EFA is largely an exploratory procedure, but sub-
stantive and practical considerations should strongly guide the factor ana-
lytic process. Because of this and other issues (e.g., the role of sampling
error), the results of an initial EFA should be interpreted cautiously and
should be cross-validated (additional EFAs or CFAs should be conducted
using independent data sets).

Factor Rotation

Once the appropriate number of factors has been determined, the ex-
tracted factors are rotated, to foster their interpretability. In instances when
two or more factors are involved (rotation does not apply to one-factor
solutions), rotation is possible because of the indeterminate nature of the
common factor model—that is, for any given multiple-factor model, there
exist an infinite number of equally good-fitting solutions, each represented
by a different factor loading matrix. The term simple structure was coined
by Thurstone (1947) to refer to the most readily interpretable solutions in
which (1) each factor is defined by a subset of indicators that load highly
on the factor; and (2) each indicator (ideally) has a high loading on one
factor (often referred to as a primary loading) and has a trivial or close to
zero loading on the remaining factors (referred to as a cross-loading or sec-
ondary loading). In applied research, factor loadings greater than or equal
to .30 or .40 are often interpreted as salient; that is, the indicator is mean-
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ingfully related to a primary or secondary factor. However, explicit or
widely accepted guidelines do not exist and the criteria for salient and
nonsalient loadings often depend on the empirical context. Thus, for mod-
els that contain two or more factors (where an infinite number of equally
fitting solutions is possible), rotation is conducted to produce a solution
with the best simple structure. It is important to emphasize that rotation
does not alter the fit of the solution; for example, in ML EFA, model χ2 is
the same before and after factor rotation. Rather, factor rotation is a mathe-
matical transformation (i.e., rotation in multidimensional space) that is
undertaken to foster interpretability by maximizing factor loadings close
to 1.0 and minimizing factor loadings close to 0.0. For a mathematical
demonstration of this procedure, the reader is referred to Comrey and Lee
(1992).

There are two types of rotation: orthogonal and oblique. In orthogonal
rotation, the factors are constrained to be uncorrelated (i.e., factors are ori-
ented at 90° angles in multidimensional space); in oblique rotation, the
factors are allowed to intercorrelate (i.e., permit factor axis orientations of
less than 90°). The correlation between two factors is equal to the cosine
of the angle between the rotational axes. Because cos(90) = 0, the factors
are uncorrelated in orthogonal rotation. In oblique rotations, the angle of
the axis is allowed to be greater or less than 90°, and thus the cosine of the
angle may yield a factor correlation between 0 and 1.0.

In applied social sciences research, orthogonal rotation is used most
often, perhaps because it is the default in major statistical programs such
as SPSS (varimax rotation), and the perception that orthogonally rotated
solutions are more easily interpreted because the factor loadings represent
correlations between the indicators and the latent factors (e.g., squaring
the factor loading provides the proportion of variance in the indicator that
the factor solution explains). In oblique solutions, factor loadings usually
do not reflect simple correlations between the indicators and the factors
unless the factors themselves have no overlap. Because oblique rotations
allow the factors to intercorrelate, the correlations between indicators and
factors may be inflated by the covariation of the factors; that is, an indica-
tor may correlate with one factor in part through its correlation with
another factor. However, orthogonal rotation may often produce mislead-
ing solutions in situations where the factors are expected to be inter-
correlated; for example, a questionnaire whose latent structure entails sev-
eral interrelated dimensions of a broader construct. In other words,
although substantial correlations may exist among factors, orthogonal
rotation constrains the solution to yield uncorrelated latent variables.
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Thus, in most cases, oblique rotation is preferred because it provides a
more realistic representation of how factors are interrelated. If the factors
are in fact uncorrelated, oblique rotation will produce a solution that is vir-
tually the same as one produced by orthogonal rotation. If the factors are
interrelated, however, oblique rotation will yield a more accurate represen-
tation of the magnitude of these relationships. In addition, estimation of
factor correlations provides important information such as the existence of
redundant factors or a potential higher-order structure. Factor inter-
correlations above .80 or .85 imply poor discriminant validity and suggest
that a more parsimonious solution could be obtained (see Chapter 5). If all
factors in the solution are moderately intercorrelated at roughly the same
magnitude, a single higher-order factor may account for these relation-
ships (see Chapter 8). Moreover, when EFA is used as a precursor to CFA
(see Chapter 5), oblique solutions are more likely to generalize to CFA
than orthogonal solutions (i.e., constraining factors to be uncorrelated in
CFA will typically result in poor model fit).

Several forms of oblique rotation have been developed (e.g., promax,
quartamin, orthooblique). When oblique rotation is requested, most soft-
ware programs (such as SPSS) output both a pattern matrix and a structure
matrix. The loadings in the pattern matrix convey the unique relationship
between a factor and an indicator. They are interpreted in the same fashion
as partial regression coefficients in standard multiple regression; that is,
the coefficient represents the relationship between the predictor (latent
factor) and outcome (indicator), while controlling for the influence of all
other predictors (other latent factors). Thus, indicator variance that is
explained by more than one factor is omitted from the loadings in the pat-
tern matrix. The structure matrix is calculated by multiplying the pattern
matrix by the factor correlation matrix (oblique rotation produces a factor
correlation matrix, orthogonal rotation does not). Hence, loadings in the
structure matrix reflect both the unique relationship between the indicator
and factor (as in the pattern matrix) and the relationship between the indi-
cator and the shared variance among the factors. In other words, the load-
ings in the structure matrix reflect a zero-order relationship between the
indicator and a given factor without holding the other factors in the solu-
tion constant. Unless the correlations among factors are minimal, loadings
in the structure matrix will typically be larger than those in the pattern
matrix because they are inflated by the overlap in the factors (akin to zero-
order correlations vs. partial regression coefficients in standard multiple
regression). Although there is some debate about whether the pattern
matrix or structure matrix should be used, by far the pattern matrix is
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most often interpreted and reported in applied research. In fact, some pop-
ular latent variable software programs provide only the pattern matrix
(e.g., Mplus). As noted above, the mathematical operations for generating
the structure matrix are quite straightforward when the pattern matrix and
factor intercorrelation are available. Thus, with the aid of software (e.g.,
SAS PROC IML), either matrix can be readily computed on the basis of the
other (i.e., structure matrix = pattern matrix multiplied by the factor cor-
relation matrix; pattern matrix = structure matrix multiplied by the inverse
of factor correlation matrix).

The factor intercorrelations produced by an oblique rotation of a PCA
solution are often lower than those of obliquely rotated solutions based on
the common factor model (e.g., PF, ML; Fabrigar et al., 1999; Widaman,
1993). This is because in common factor analysis, random error is
removed from the factors. In PCA, random error is included in the compo-
nents because PCA does not differentiate common and unique variance.
Thus, another potential adverse consequence of PCA is to mistakenly con-
clude that components share modest variance when in fact the inter-
correlations have been attenuated by random error or to conclude that
components are distinct when in fact the error-disattenuated correlations
would be above .80. Because factor correlations arising from common fac-
tor analysis are more likely to be closer to population values, this is
another reason why methodologists usually advocate EFA over PCA.

Factor rotation is illustrated in Figure 2.4 using a real data set of eight
indicators collected from a sample of 500 participants. A scree test and
parallel analysis suggest a two-factor solution. Results indicate that the
first four indicators (Y1–Y4) load on Factor 1 and the remaining four indi-
cators (Y5–Y8) load on Factor 2. Figure 2.4 displays geometric representa-
tions of unrotated, orthogonally rotated (varimax), and obliquely rotated
(promax) factor matrices. ML estimation produced the unrotated factor
loadings presented in Figure 2.4A. Figure 2.4B shows the results of the
varimax rotation. The factor axes remain at 90° angles, but are rotated in
the most optimal fashion to maximize high factor loadings and minimize
low loadings. Rotation produces a transformation matrix. Using matrix
algebra, the unrotated factor loading matrix is multiplied by the transfor-
mation matrix to produce the rotated factor loading matrix. In this data
set, the varimax transformation matrix is as follows:

Factor 1 Factor 2
Factor 1 .93347 .35867
Factor 2 –.35867 .93347
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FIGURE 2.4. Geometric representations of unrotated, orthogonally rotated, and
obliquely rotated factor matrices.

A. Unrotated Factor Matrix

Factor

1 2

Y1 .834 –.160
Y2 .813 –.099
Y3 .788 –.088
Y4 .642 .015
Y5 .386 .329
Y6 .333 .593
Y7 .313 .497
Y8 .284 .336

B. Orthogonally Rotated Factor Matrix (Varimax)

Factor

1 2

Y1 .836 .150
Y2 .794 .199
Y3 .767 .201
Y4 .594 .244
Y5 .242 .445
Y6 .098 .673
Y7 .114 .576
Y8 .145 .416

C. Obliquely Rotated Factor Matrix (Promax)

Factor

1 2

Y1 .875 –.062
Y2 .817 .003
Y3 .788 .012
Y4 .588 .106
Y5 .154 .418
Y6 –.059 .704
Y7 –.018 .595
Y8 .055 .413



These values convey how much the axes were rotated to foster simple
structure. Specifically, the values on the diagonal (.93347) are cosines and
the values on the off-diagonal (.35867, –.35867) are sines and –sines. As
shown in Figure 2.4B, the axes were rotated 21° to better transect the clus-
ters of indicators. Within rounding error, the cos(21) equals .933 and the
sin(19) equals .359, the same as the transformation coefficients shown
above. Because orthogonal rotation was used, the axes of Factor 1 and Fac-
tor 2 remain at right angles, and thus the factors are constrained to be
uncorrelated, that is, cos(90) = 0.

To witness the effects of rotation on maximizing and minimizing fac-
tor loadings, consider the fifth indicator, Y5. Before rotation, the loadings
of Y5 on Factor 1 and Factor 2 were very similar (.386 and .329, respec-
tively; Figure 2.4A). A 21° rotation of the factor axes raised Y5’s position
on the Factor 2 axis (.445), and decreased this indicator’s position on the
Factor 1 axis (.242) (Figure 2.4B). Although this transformation fosters
the interpretability of the solution, it does not alter the communality of Y5
or any other indicator. In a solution entailing more than one latent vari-
able, communalities in an orthogonal EFA are calculated by taking the
sum of squared loadings for a given indicator across all factors.7 Before and
after rotation, the proportion of variance explained in Y5 is .257; unrotated
solution: .3862 + .3292 = .257, rotated solution: .2422 + .4452 = .257. Thus,
rotation does not alter the fit of the factor solution.

Figure 2.4B also suggests that oblique rotation may be more appropri-
ate. A factor solution is best defined when the indicators are clustered
around the upper end of their respective factor axes. The higher up the
axis, the higher the factor loading; if an indicator is in close proximity to
one factor axis, it does not load highly on another factor. As shown in Fig-
ure 2.4B, orthogonal rotation moved the Factor 2 axis closer to the Y5–Y8
indicators. As a result, the rotation had an overall effect of increasing the
primary loadings of Y5–Y8 on Factor 2, and decreasing their cross-
loadings on Factor 1 (compared to the unrotated solution, Figure 2.4A).
However, orthogonal rotation moved the Factor 1 axis away from the Y1–
Y4 indicators, which had the general effect of increasing the magnitude of
the cross-loadings of Y1–Y4 on Factor 2; for example, Y4: .015 versus .244
for the unrotated and rotated solutions, respectively. Indeed, in instances
where all the indicators fall in between the factor axes after orthogonal
rotation (as seen in Figure 2.4B), the restriction of maintaining a 90° ori-
entation of the factor axes may not be tenable. Oblique rotations such as
promax begin with an orthogonal rotation, but then “break” the 90° angle
to allow the factor axes to pass through the clusters of indicators better.
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The angle of the factor axes reflects the factor correlation. If factors are
uncorrelated, the angle of factor axes will remain close to 90°. If the factors
are correlated, the angle of factor axes will deviate from 90°.

Figure 2.4C provides a geometric depiction of oblique rotation (pro-
max) of the two-factor solution. Note that the axes of Factor 1 and Factor
2 were both turned inward somewhat to better transect the two clusters of
indicators. As compared with orthogonal rotation, the oblique rotation
increased the values of most primary loadings further. A more notable
impact of oblique rotation was its success at moving the cross-loadings
closer to zero (but as before, the overall fit of the solution is the same). To
accomplish this, the angle of the factor axes was shifted from 90° to 63°
(see Figure 2.4C). The results of the analysis indicate that the correlation
of Factor 1 and Factor 2 is .45. This corresponds to the cosine of the factor
angle; that is, cos(63) = .45.

Factor Scores

After an appropriate factor solution has been established, the researcher
may wish to calculate factor scores using the factor loadings and factor
correlations. Factor scores are used for various purposes such as to serve
as proxies for latent variables, and to determine a participant’s relative
standing on the latent dimension. Conceptually, a factor score is the score
that would have been observed for a person if it had been possible to mea-
sure the latent factor directly. In applied research, factor scores are often
computed by creating coarse factor scores, which are simple unweighted
composites of the raw scores of indicators (e.g., averaging or summing)
found to have salient loadings on the factor. However, there are many rea-
sons why coarse factor scores may poorly represent latent factors (e.g.,
they may be highly intercorrelated even when the factors are truly
orthogonal; Grice, 2001). Alternatively, factor scores can be estimated by
multivariate methods that use various aspects of the reduced or unreduced
correlation matrix and factor analysis coefficients. The resulting values are
called refined factor scores. A frequently used method of estimating refined
factor scores is Thurstone’s (1935) least squares regression approach, al-
though several other strategies have been developed (e.g., Bartlett, 1937;
Harman, 1976; McDonald, 1981). Most statistical software packages pro-
vide options to compute refined factor scores by one or more of these
methods. In the majority of instances, refined factor scores have less bias
than coarse factor scores and thus are favored over coarse factor scores as
proxies for latent factors (Grice, 2001). However, a complicating issue in
factor score estimation is the indeterminate nature of the common factor
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model. With respect to factor scores, this indeterminacy means that there
is an infinite number of sets of factor scores that could be computed from
any given factor analysis that would be equally consistent with the same
factor loadings (Grice, 2001). The degree of indeterminacy depends on
several aspects, such as the ratio of items to factors and the size of the item
communalities (e.g., factors defined by several items with strong com-
munalities have better determinacy). If a high degree of indeterminacy is
present, the sets of factor scores can vary so widely such that an individual
ranked high on the dimension in one set may receive a low ranking on the
basis of another set. In such scenarios, the researcher has no way of dis-
cerning which set of scores or rankings is most accurate.

Thus, although typically neglected in applied factor analytic research,
the degree of factor score indeterminacy should be examined as part of
EFA, especially in instances when factor scores are to be computed for use
in subsequent statistical analyses. Grice (2001) has specified three criteria
for evaluating the quality of factor scores: (1) validity coefficients—correla-
tions between the factor score estimates and their respective factor scores;
(2) univocality—the extent to which the factor scores are excessively or
insufficiently correlated with other factors in the same analysis; and (3)
correlational accuracy—how closely the correlations among factor scores
correspond to the correlations among the factors. For instance, Gorsuch
(1983) has recommended that validity coefficients should be at least .80,
although higher values (e.g., > .90) may be required in some situations
(e.g., when factor scores are used as dependent variables). Unfortunately,
procedures for evaluating factor scores are not standard options in most
software packages. An exception is the Mplus program, where validity
coefficients can be requested as part of CFA or EFA within CFA by using
the FSDETERMINACY option of the OUTPUT command (see Chapter 5).
To fill this void, Grice (2001) has developed SAS PROC IML computer
code for assessing the degree of factor score indeterminacy (validity
coefficients, univocality, correlational accuracy) in the context of EFA
(these programs can be downloaded from psychology.okstate.edu/faculty/
jgrice/factorscores/).

SUMMARY

Procedural recommendations for conducting applied EFA are summarized
in Table 2.3. In addition to providing a practical overview of exploratory
factor analysis (e.g., procedural considerations for factor estimation, selec-
tion, rotation, and interpretation), the goal of this chapter was to introduce
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TABLE 2.3. Fundamental Steps and Procedural Recommendations for EFA

Factor Extraction

• Use an estimator based on the common factor model, such as:
—Principal factors: no distributional assumptions, less prone to improper

solutions than maximum likelihood
—Maximum likelihood: assumes multivariate normality, but provides goodness

of fit evaluation and, in some cases, significance tests and confidence
intervals of parameter estimates

Factor Selection

• Determine the appropriate number of factors by:
—Scree plot of eigenvalues from the reduced correlation matrix,
—Parallel analysis, and/or
—Goodness of model fit (e.g., χ2, RMSEA; see Chapter 3)

Factor Rotation

• In multifactorial models, rotate the solution to obtain simple structure by:
—Using an oblique rotation method (e.g., promax, quartimin)

Interpret the Factors and Evaluate the Quality of the Solution

• Consider the meaningfulness and interpretability of the factors:
—Factors should have substantive meaning and conceptual/empirical relevance
—Rule out nonsubstantive explanations such as method effects (e.g., factors

comprised of reverse- and non-reverse-worded items; see Chapters 3 and 5)
• Eliminate poorly defined factors, such as:

—Factors on which only two or three items have salient loadings
—Factors defined by items that have small loadings (i.e., low communalities)
—Factors with low factor determinacy (poor correspondence between the

factors and their factor scores; see Grice, 2001)
• Eliminate poorly behaved items (indicators), such as:

—Items with high loadings on more than one factor (i.e., cross-loadings)
—Items with small loadings on all factors (i.e., low communalities)

Re-Run and (Ideally) Replicate the Factor Analysis

• If items or factors are dropped in preceding step, re-run the EFA in the same
sample

• Replicate the final EFA solution in an independent sample
• Consider further replications/extensions of the factor solution by:

—Developing tentative CFA models (e.g., EFA in the CFA framework; see
Chapter 5)

—Larger-scale CFA investigations
—Measurement invariance evaluation in population subgroups (e.g., equivalence

of solution between sexes; see Chapter 7)

Note. EFA, exploratory factor analysis; RMSEA, root mean square error of approximation;
CFA, confirmatory factor analysis.



key concepts that will be carried forward in the subsequent chapters on
CFA (e.g., observed vs. latent variables, factor loadings, factor correlations,
common and unique variance, basic equations and notation). Some funda-
mental differences of EFA and CFA were described. Unlike EFA, in CFA
the number of factors and the pattern of indicator–factor loadings are
specified in advance on the basis of strong empirical knowledge or theory.
The acceptability of the CFA model is evaluated in part by descriptive fit
statistics that convey the ability of the solution to reproduce the observed
relationships among the input indicators, although similar testing can be
applied in EFA when the ML estimator is used. As will be seen in Chapter
3, EFA and CFA differ in several other important manners.

NOTES

1. Exceptions to this rule are discussed in Chapters 3 and 4 (e.g., when indi-
cator measurement errors are correlated).

2. For instance, in the current example, which entails a single factor, the fac-
tor loadings can be interpreted as zero-order correlation coefficients between the
latent factor and the observed measures (i.e., factor loading = the standardized
regression slope = zero-order correlation). In solutions involving multiple, corre-
lated factors (oblique rotation), factor loadings from the factor pattern matrix are
interpreted as partial regression coefficients.

3. The reader will encounter many variations in this notational system across
factor analysis and SEM texts. For instance, because indicator unique variances (ε)
are not observed, it is common to see these parameters depicted as circles in path
diagrams. In Chapter 3, this notation is expanded by differentiating latent X (exog-
enous) and latent Y (endogenous) solutions.

4. In PCA, the limit on the number of components is equal to p.
5. Because eigenvalues are drawn from the unreduced correlation matrix (R),

PCA is always conducted initially regardless of the type of factor analysis
requested (e.g., PF).

6. Some researchers (e.g., Glorfeld, 1995) have recommended that the 95th
percentile of eigenvalues from random data be used in place of average eigen-
values, in part to adjust for parallel analysis’s slight tendency to overfactor (regard-
less of method used, research has shown that parallel analysis is accurate in the
vast majority of cases; e.g., Humphreys & Montanelli, 1975; Zwick & Velicer,
1986).

7. Although communalities can also be hand calculated from the estimates of
an obliquely rotated EFA solution, this computation is less straightforward
because the factors are permitted to be intercorrelated and thus the factor loadings
are partial regression coefficients. Later chapters (e.g., Chapter 3) discuss the trac-
ing rules necessary to compute these estimates.
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Introduction to CFA

The purpose of this chapter is to introduce the reader to the purposes,
parameters, and fundamental equations of CFA. Now that the com-
mon factor model and EFA have been described in Chapter 2, CFA
and EFA are compared more thoroughly. On the basis of these com-
parisons, the advantages and purposes of CFA will become apparent.
The notation and computation of the parameters of the CFA model are
presented. This chapter also deals with the important concepts of
model identification, maximum likelihood estimation, and goodness-of-
fit evaluation. The concepts introduced in this chapter should be stud-
ied carefully, as they are germane to all examples of CFA presented in
subsequent chapters of this book.

SIMILARITIES AND DIFFERENCES OF EFA AND CFA

Common Factor Model

Like EFA, the purpose of CFA is to identify latent factors that account for
the variation and covariation among a set of indicators. Both EFA and CFA
are based on the common factor model, and thus many of the concepts
and terms that were discussed in Chapter 2 apply to CFA, such as factor
loadings, unique variances, communalities, and residuals. However, while
EFA is generally a descriptive or exploratory procedure, in CFA the
researcher must prespecify all aspects of the factor model: the number of
factors, the pattern of indicator–factor loadings, and so forth. As noted in
Chapter 2, CFA requires a strong empirical or conceptual foundation to
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guide the specification and evaluation of the factor model. Accordingly,
CFA is typically used in later phases of scale development or construct val-
idation after the underlying structure has been tentatively established by
prior empirical analyses using EFA, as well as on theoretical grounds.

EFA and CFA often rely on the same estimation methods (e.g., maxi-
mum likelihood, or ML). When a full information estimator such as ML is
used, the factor models arising from EFA and CFA can be evaluated in
terms of how well the solution reproduces the observed variances and
covariances among the input indicators (i.e., goodness-of-fit evaluation).
In addition, the quality of EFA and CFA models is determined in part by
the size of resulting parameter estimates (e.g., magnitude of factor load-
ings and factor intercorrelations) and how well each factor is represented
by observed measures (e.g., number of indicators per factor, size of indica-
tor communalities, factor determinacy).

Standardized and Unstandardized Solutions

The tradition in EFA is to completely standardize all variables in the analy-
sis. Specifically, a correlation matrix is used as input in EFA and both the
latent factors and indicators are completely standardized: factor variances
equal 1.0; factor loadings are interpreted as correlations or standardized
regression coefficients.1 Although CFA also produces a completely stan-
dardized solution, much of the analysis does not standardize the latent or
observed variables. Instead of using a correlation matrix (i.e., a correlation
matrix is a completely standardized variance–covariance matrix), CFA
typically analyzes a variance–covariance matrix (needed to produce an
unstandardized CFA solution) or raw data that are used by the software
program to produce an input variance–covariance matrix. Thus, the CFA
input matrix is comprised of indicator variances on the diagonal (a vari-
ance equals the indicator’s standard deviation squared; i.e., V = SD2), and
indicator covariances in the off-diagonal (a covariance can be calculated by
multiplying the correlation of two indicators by their SDs; i.e., COVxy =
rxySDxSDy). In addition to a completely standardized solution, the results
of CFA include an unstandardized solution (parameter estimates expressed
in the original metrics of the indicators) and possibly a standardized solu-
tion (relationships involving unstandardized indicators and standardized
latent variables). Unstandardized, standardized, and completely standard-
ized solutions are discussed in more detail in Chapter 4. Of particular note
here is the fact that many key aspects of CFA are based on unstandardized
estimates, such as the standard errors and significance testing of model
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parameters. As will be seen in Chapter 7, the various forms of measure-
ment invariance evaluation (e.g., equivalence of parameter estimates with-
in and across groups) are also based on the unstandardized solution.

The unstandardized means of the indicators can also be included in
the CFA. Thus, in contrast to EFA, which focuses on completely standard-
ized values, CFA may entail the analysis of both unstandardized variance–
covariance structures and mean structures (as the result of standardization
in EFA, indicator means are presumed to be zero). As discussed in Chapter
7, when indicator means are included as input in CFA, the analysis can
estimate the means of the latent factors and the intercepts of the indica-
tors. Akin to multiple regression, an indicator intercept is interpreted as
the predicted value of the indicator when the latent factor—or predictor—
is zero. The analysis of mean structures is particularly relevant to multiple-
groups CFA models where the researcher may be interested in comparing
groups on the latent means (the SEM parallel to analysis of variance) or
determining the equivalence of a testing instrument’s measurement prop-
erties across groups (e.g., inequality of item intercepts is indicative of test
bias/differential item functioning; see Chapter 7).

The outcome of EFA is reported as a completely standardized solu-
tion. In applied CFA research, completely standardized solutions are most
commonly reported. However, SEM methodologists often express a strong
preference for reporting unstandardized solutions because the analysis
itself is based on unstandardized variables, and completely standardized
values are potentially misleading. For instance, the true nature of the vari-
ance and relationships among indicators and factors can be masked when
these variables have been standardized, and when the original metric of
variables is expressed in meaningful units, unstandardized estimates more
clearly convey the importance or substantive significance of the effects (cf.
Willett, Singer, & Martin, 1998). Chapter 4 demonstrates that, through
basic equations, one can readily calculate a (completely) standardized
solution from the unstandardized solution, and vice versa.

Indicator Cross-Loadings/Model Parsimony

In addition, EFA and CFA differ markedly in the manner by which indica-
tor cross-loadings are handled in solutions entailing multiple factors (in
unidimensional models, the issues of cross-loadings and factor rotation are
irrelevant). As noted in Chapter 2, all indicators in EFA freely load on all
factors and the solution is rotated to maximize the magnitude of primary
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loadings and minimize the magnitude of cross-loadings. Factor rotation
does not apply to CFA. This is because the identification restrictions asso-
ciated with CFA are achieved in part by fixing most or all indicator cross-
loadings to zero (see Figure 3.1). In other words, rotation is not necessary
in CFA because simple structure is obtained by specifying indicators to
load on just one factor. CFA models are typically more parsimonious than
EFA solutions because while primary loadings and factor correlations are
freely estimated, no other relationships are specified between the indica-
tors and factors (e.g., no loadings that relate indicators Y1–Y4 to Factor 2,
and indicators Y5–Y8 to Factor 1; see Figure 3.1A). Thus, with few excep-
tions (cf. EFA in the CFA framework, Chapter 5), CFA attempts to repro-
duce the observed relationships among input indicators with fewer param-
eter estimates than EFA.

Table 3.1 presents the factor loading matrices of three analyses of the
same data set (N = 1,050 adolescents): (1) a CFA (Model A); (2) an EFA
with oblique rotation (Model B); and (3) an EFA with orthogonal rotation
(Model C). Eight antisocial behaviors were used as indicators in the analy-
ses. Each analysis entailed two factors: Property Crimes (e.g., shoplifting,
vandalism) and Violent Crimes (e.g., fighting, aggravated assault). The
path diagrams of Models A and B in Figure 3.1 correspond to Models A
and B in Table 3.1. The Model B path diagram could be edited to conform
to an orthogonal EFA by removing the double-headed curved arrow
reflecting the factor correlation. As can be seen in Table 3.1, in EFA each
indicator loads on all factors. Rotation (either orthogonal or oblique) is
used to foster the interpretability of the factor loadings (i.e., maximize
high loadings, minimize low loadings). For the reasons stated in Chapter
2, rotation does not affect the fit of the EFA solution; that is, the indicator
communalities are identical in orthogonal and oblique EFA (see Table 3.1
and Appendix 3.1). The CFA model is more parsimonious than the EFA
models because all indicator cross-loadings are prespecified to equal zero;
that is, Y1–Y4 on Violent Crimes = 0, Y5–Y8 on Property Crimes = 0 (see
Model A in Table 3.1 and Figure 3.1). Thus, there are only 8 factor loading
estimates in the CFA, as compared with 16 factor loading estimates in the
EFAs. Accordingly, rotation in CFA is not required.

Another consequence of fixing cross-loadings to zero in CFA is that
factor correlation estimates in CFA tend to be of higher magnitude than
analogous EFA solutions. This can be seen in the current data set where
the factor correlations between Property Crimes and Violent Crimes were
.57 and .62 for the oblique EFA and CFA, respectively (Table 3.1). The rea-
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Model A: Confirmatory Factor Model (all measurement error is random)

Model B: Exploratory Factor Model (oblique rotation)

Model C: Confirmatory Factor Model (with a correlated measurement error)

FIGURE 3.1. Path diagrams of confirmatory and exploratory factor models.
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TABLE 3.1. Factor Loadings Matrices from EFA and CFA
of Adolescent Antisocial Behaviors

A. CFA (factor correlation = .6224)

Factor

CommunalityProperty Crimes Violent Crimes

Y1 .7996 .0000 .64
Y2 .6451 .0000 .42
Y3 .5699 .0000 .32
Y4 .4753 .0000 .23
Y5 .0000 .7315 .53
Y6 .0000 .5891 .35
Y7 .0000 .7446 .55
Y8 .0000 .5803 .34

B. EFA (oblique rotation, factor correlation = .5722)

Factor

CommunalityProperty Crimes Violent Crimes

Y1 .9187 –.0958 .75
Y2 .5422 .1045 .37
Y3 .5300 .0372 .30
Y4 .4494 .0103 .21
Y5 .0434 .7043 .53
Y6 –.1178 .6999 .41
Y7 .1727 .6106 .52
Y8 .0264 .5756 .35

C. EFA (orthogonal rotation, factor correlation = 0)

Factor

CommunalityProperty Crimes Violent Crimes

Y1 .8493 .1765 .75
Y2 .5509 .2574 .37
Y3 .5185 .1898 .30
Y4 .4331 .1408 .21
Y5 .2587 .6826 .53
Y6 .1032 .6314 .41
Y7 .3535 .6312 .52
Y8 .2028 .5552 .35

Note. N = 1,050. Y1 = shoplifting, Y2 = vandalism, Y3 = theft, Y4 = broke into building/
vehicle, Y5 = fighting, Y6 = aggravated assault, Y7 = hit family/teachers, Y8 = threatened
others.



son for this outcome, along with an explanation of the communality and
model-implied estimates in EFA and CFA, is provided in Appendix 3.1.

Unique Variances

Unlike EFA, the CFA framework offers the researcher the ability to specify
the nature of relationships among the measurement errors (unique vari-
ances) of the indicators. Although both EFA and CFA differentiate com-
mon and unique variances, within EFA the specification of relationships
among unique variances is not made. Because CFA typically entails a more
parsimonious solution (i.e., CFA usually attempts to reproduce the ob-
served relationships among indicators with fewer parameter estimates than
EFA), it is possible to estimate such relationships when this specification is
substantively justified and other identification requirements are met (see
Chapter 5). Consequently, because of EFA’s identification restrictions, fac-
tor models must be specified under the assumption that measurement
error is random. In contrast, correlated measurement error can be modeled
in a CFA solution. The CFA model presented in Model A of Figure 3.1
(i.e., Figure 3.1A) depicts a two-factor measurement model where all mea-
surement error is presumed to be random. The underlying assumption of
this specification is that the observed relationship between any two indica-
tors loading on the same factor (e.g., Y7 and Y8) is due entirely to the
shared influence of the latent dimension; that is, if Factor 2 was partialed
out, the intercorrelations between these indicators would be zero. The
model presented in Figure 3.1C depicts the same CFA measurement
model, with the exception that a correlated error has been specified
between Y2 and Y3. This specification assumes that, whereas indicators Y2
and Y3 are related in part because of the shared influence of the latent
dimension (Factor 1), some of their covariation is due to sources other
than the common factor. In measurement models, the specification of cor-
related errors may be justified on the basis of source or method effects that
reflect additional indicator covariation that resulted from common assess-
ment methods (e.g., observer ratings, questionnaires), reversed or simi-
larly worded test items, or differential susceptibility to other influences
such as response set, demand characteristics, acquiescence, reading diffi-
culty, or social desirability (cf. Brown, 2003; Marsh, 1996). The specifica-
tion in Figure 3.1C depicts a correlated uniqueness approach to modeling
error covariances (i.e., zero-order relationships are freely estimated be-
tween pairs of indicators). As noted in the discussion of multitrait–
multimethod CFA solutions (Chapter 6), the relationships among indica-
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tor errors can also be modeled using a correlated methods approach that
entails the specification of methods factors in addition to the latent factors
of substantive interest.

The inability to specify correlated errors (i.e., the nature of the rela-
tionships among unique variances) is a very significant limitation of EFA.
For instance, in applied factor analytic research of questionnaires com-
prised of a combination of positively and reversed worded items, a com-
mon consequence of this EFA limitation is the tendency to extract and
interpret methods factors that have little substantive basis (cf. Brown,
2003; Marsh, 1996). For example, a very extensive psychometric literature
exists on the Rosenberg (1965) Self-Esteem Scale (SES), a questionnaire
that consists of four positively worded items (e.g., “I feel good about
myself”) and three negatively worded items (e.g., “At times I think I am no
good at all”). Early EFA research routinely produced two SES factors com-
prised of negatively and positively worded items that were interpreted as
substantively meaningful (e.g., “positive self-evaluation” vs. “negative self-
evaluation”). However, as compellingly argued by Marsh (1996), a strong
conceptual basis did not exist in support for distinct dimensions of posi-
tive and negative self-esteem. Instead, Marsh (1996) noted that these two-
factor solutions were an artifact of response styles associated with the
wording of the items (e.g., response biases such as acquiescence). Using
CFA, Marsh (1996) evaluated various SES measurement models corre-
sponding to previously reported solutions (e.g., one-factor model with-
out error covariances, two-factor models) and correlated uniqueness
(residual) models. Results indicated the superiority of a unidimensional
solution (“Global Self-Esteem”) with method effects (correlated residuals)
associated with the negatively worded items. Although having a compel-
ling substantive basis (i.e., the existence of a single dimension of self-
esteem, but need for an error theory to account for the additional
covariation among similarly worded items), this model could not be esti-
mated in EFA because EFA does not allow for the specification of corre-
lated indicator errors.

Model Comparison

The preceding sections of this chapter have documented some of the key
ways that CFA offers greater modeling flexibility than EFA (i.e., prespeci-
fication of the number of factors, patterns of item–factor relationships,
presence or absence of error covariances). In addition to these aspects, the
CFA framework allows the researcher to impose other restrictions on the
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factor solution, such as constraining all the factor loadings or all the
unique variances to be equal (e.g., as in the evaluation of the conditions of
tau equivalence or parallel tests; see Chapter 7). The viability of these con-
straints can be evaluated by statistically comparing whether the fit of the
more restricted solution is worse than a comparable solution without these
constraints. Direct statistical comparison of alternative solutions is possi-
ble when the models are nested. As discussed further in Chapter 5, a nested
model contains a subset of the free parameters of another model, which is
often referred to as the parent model. For example, consider the following
two models: (1) Model P: a one-factor model comprised of six indicators
allowed to freely load onto the factor; and (2) Model N: a one-factor model
identical to Model P, except that the factor loadings are constrained to load
equally onto the factor. Although the models are structurally the same
(i.e., they consist of one factor and the same six indicators), they differ in
their number of freely estimated versus constrained parameters. When
parameters are freely estimated, the researcher allows the analysis to find
the values for the parameters in the CFA solution (e.g., factor loadings,
factor correlations, unique variances) that optimally reproduce the vari-
ances and covariances of the input matrix. In the case of fixed parameters,
the researcher assigns specific values (e.g., fixes cross-loadings to zero to
indicate no relationship between an indicator and a factor; cf. lack of an
arrow between Y1 and Factor 2 in Figure 3.1A). When parameters are con-
strained, the researcher does not specify the parameters’ exact values, but
places other restrictions on the magnitude these values can take on (e.g.,
in the case of Model N, the researcher instructs the analysis to optimally
reproduce the input matrix under the condition that all factor loadings are
the same). Thus, Model N is nested under Model P (the parent model)
because it contains a subset of Model P’s free parameters. Accordingly, the
fit of Model N can be statistically compared to the fit of Model P (through
methods such as the χ2 difference test; see Chapter 4) to directly evaluate
the viability of the condition of equal factor loadings (i.e., tau equivalence
= do the six indicators relate equally to the latent factor?). Because EFA
entails only freely estimated parameters (fixed parameters cannot be speci-
fied), comparative model evaluation of this nature is not possible.

These procedures (e.g., χ2 difference testing) can be used to statisti-
cally compare other forms of nested models in CFA. For instance, CFA can
be used to statistically determine whether the various measurement
parameters of a factor model (e.g., factor loadings) are the same in two or
more groups (e.g., males and females; see Chapter 7).
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PURPOSES AND ADVANTAGES OF CFA

From the preceding sections of this chapter, the objectives and advantages
of CFA in relation to EFA may now be apparent. Although both EFA and
CFA are based on the common factor model and often use the same esti-
mation method (e.g., maximum likelihood), the specification of CFA is
strongly driven by theory or prior research evidence. Thus, unlike the
approach in EFA, in which the researcher can only prespecify the number
of factors, the CFA researcher usually tests a much more parsimonious
solution by indicating the number of factors, the pattern of factor loadings
(and cross-loadings, which are usually fixed to zero), and an appropriate
error theory (e.g., random or correlated indicator error). In contrast to
EFA, CFA allows for the specification of relationships among the indicator
uniquenesses (error variances), which may have substantive importance
(e.g., correlated errors due to method effects). Thus, every aspect of the
CFA model is specified in advance. The acceptability of the specified
model is evaluated by goodness of fit and the interpretability and strength
of the resulting parameter estimates (overall goodness of fit also applies to
EFA when the ML estimator is used). As noted previously, CFA is more
appropriate than EFA in the later stages of construct validation and test
construction when prior evidence and theory support “more risky” a priori
predictions regarding latent structure. For example, the modeling flexibil-
ity and capabilities of CFA (e.g., specification of an error theory) afford
sophisticated analyses of construct validity, such as in the multitrait–
multimethod approach (see Chapter 6) where the convergent and discrim-
inant validity of dimensions are evaluated in context of (partialing out the
influence of) varying assessment methods.

In addition, CFA offers a very strong analytic framework for evaluat-
ing the equivalence of measurement models across distinct groups (e.g.,
demographic groups such as sexes, races, or cultures). This is accom-
plished by either multiple-group solutions (i.e., simultaneous CFAs in two
or more groups) or MIMIC models (i.e., the factors and indicators are
regressed onto observed covariates representing group membership; see
Chapter 7). Although cursory methods of examining the concordance of
factor structures within EFA are available (e.g., Ahmavaara, 1954), the
CFA framework is superior in terms of its modeling flexibility (e.g., ability
to specify partial invariance models; cf. Byrne, Shavelson, & Muthén,
1989) and its ability to examine every potential source of invariance in the
factor solution, including latent means and indicator intercepts. These
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capabilities permit a variety of important analytic opportunities in applied
research, such as the evaluation of whether a scale’s measurement proper-
ties are invariant across population subgroups; for example, are the num-
ber of factors, factor loadings, item intercepts, and so forth, that define the
latent structure of a questionnaire equivalent in males and females? Mea-
surement invariance is an important aspect of scale development, as this
endeavor determines whether a testing instrument is appropriate for use in
various groups (Chapter 7). Indeed, multiple-groups CFA can be used to
evaluate the generalizability of a variety of important constructs (e.g., are
the diagnostic criteria sets used to define mental disorders equivalent
across demographic subgroups such as race and gender?). Moreover, this
approach can be used to examine group differences in the means of the
latent dimensions. While analogous to analysis of variance (ANOVA), the
CFA approach is superior to ANOVA because group comparisons are made
in the context of measurement invariance (unlike ANOVA, which simply
assumes that a given observed score reflects the same level of the latent
construct in all groups).

Similarly, another advantage of CFA and SEM is the ability to estimate
the relationships among variables adjusting for measurement error. A key
limitation of ordinary least squares (OLS) approaches such as correlational
and multiple regression analysis is the assumption that variables have been
measured without error; that is, they are perfectly reliable, meaning that all
of an observed measure’s variance is true score variance. However, this
assumption rarely holds in the social and behavioral sciences, which rely
heavily on variables that have been assessed by questionnaires, indepen-
dent observer ratings, and the like. Consequently, estimates derived from
OLS methods (e.g., correlations, regression coefficients) are usually atten-
uated to an unknown degree by measurement error in the variables used in
the analysis.2 However, CFA and SEM allow for such relationships to be
estimated after adjusting for measurement error and an error theory
(extent of random and correlated measurement error). For example, in the
CFA model presented in Figure 3.1A, the relationship between the two
constructs would be reflected by their factor intercorrelation (r between
Factor 1 and Factor 2), as opposed to the observed relationships among
the indicators that load on these factors. Indeed, this factor correlation is a
better estimate of the population value of this relationship than any two
indicator pairings (e.g., r between Y1 and Y4) because it has been adjusted
for measurement error; that is, shared variance among the factor’s indica-
tors is operationalized as true score variance, which is passed onto the
latent factor.
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In Chapter 2, the problems with the computation and use of factor
scores in EFA were briefly noted. On occasion, a researcher will wish to
relate the factors revealed by EFA to other variables. Typically (but see
Gorsuch, 1997), this requires the researcher to compute factor scores to
serve as proxies for the latent factors in subsequent analyses. However, this
practice is limited by the issue of factor score indeterminacy: for any given
EFA, there are an infinite number of sets of factor scores that could be
computed that are equally consistent with the factor loadings (see Chapter
2). In CFA and SEM, indeterminacy of factor scores is not a problem
because this analytic framework eliminates the need to compute factor
scores; that is, the latent factors themselves are used in the analysis. Unlike
EFA, CFA/SEM offers the researcher considerable modeling flexibility,
such that additional variables can be readily brought into the analysis to
serve as correlates, predictors, or outcomes of the latent variables (e.g., see
MIMIC models, Chapter 7).

Frequently, CFA is used as a precursor to SEM models that specify
structural relationships (e.g., regressions) among the latent variables. SEM
models can be broken down into two major components: (1) the measure-
ment model, which specifies the number of factors, how the various indica-
tors are related to the latent factors, and the relationships among indicator
errors (i.e., a CFA model); and (2) the structural model, which specifies
how the various latent factors are related to one another (e.g., direct or
indirect effects, no relationship, spurious relationship). Consider the two
basic path diagrams in Figure 3.2. Whereas the two diagrams depict mod-
els entailing the same set of indicators and the same latent factors, the first
diagram (A) represents a measurement model (a CFA model entailing
three intercorrelated factors) and the second diagram (B) reflects a struc-
tural model to indicate that the relationship between Factor X and Factor
Y is fully mediated by Factor Z (as with factor loadings, direct effects
among latent variables are depicted by unidirectional arrows in Figure
3.2B). Thus, whereas the relationships among the latent variables are
allowed to freely intercorrelate in the CFA model (analogous to an oblique
EFA solution), the exact nature of the relationships is specified in the
structural model; that is, Factor X has a direct effect on Factor Z, Factor Z
has a direct effect on Factor Y, and Factor X has an indirect effect on Factor
Y. Note that in the measurement (CFA) model, there are three parameters
relating the factors to one another: factor correlations between X and Y, X
and Z, and Y and Z (depicted by double-headed, curved arrows in Figure
3.2A). In the structural model, there are only two structural parameters,
X → Y and Y → Z. As discussed later in this chapter, the structural portion
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of this solution is overidentified, meaning that there exist fewer structural
parameters (i.e., 2: X → Y and Y → Z) in the model than the number
of possible relationships among the latent factors (i.e., 3: correlations
between X and Y, X and Z, and Y and Z). Thus, the structural model is
more parsimonious than the measurement model because it attempts to
reproduce the relationships among the latent variables with one less freely
estimated parameter. Because of the overidentified nature of the structural
portion of this model, its goodness of fit may be poorer than that of the
measurement model. As illustrated by a tracing rule presented later in this
chapter (e.g., Eq. 3.16), the structural portion of this model will result in
poor fit if the product of the Factor X → Factor Z path and Factor Z →
Factor Y path does not closely approximate the correlation between Fac-
tors X and Y estimated in the measurement model. Indeed, the indirect
effects structural model in Figure 3.2B would be poor fitting because the
product of the X → Z and Z → Y direct effects [(.40)(.50) = .20] does not
approximate the correlation between Factors X and Y (.60; see Figure
3.2A).
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FIGURE 3.2. Path diagrams of measurement and structural models.

Model A: Measurement Model

Model B: Structural Model



The purpose of this discussion is to illustrate that goodness of model
fit is determined by how adequately both the measurement and structural
portions of a model are specified. A key aspect of CFA evaluation is the
ability of the parameters from the measurement model (e.g., factor load-
ings and factor correlations) to reproduce the observed relationships
among the indicators. If the CFA model is misspecified (e.g., failure to
specify the correct number of factors, pattern of factor loadings, etc.), a
poor-fitting solution will result. However, poor fit may also arise from a
misspecified structural model, which, like the model depicted in Figure
3.2B, often possesses fewer freely estimated parameters than its corre-
sponding measurement model. Because there are a variety of potential
sources of poor fit in CFA models involving multiple indicators, the
researcher should establish a viable measurement model prior to pursuing
a structural solution. If model testing is initiated with a structural solution,
it is usually difficult to determine the extent to which poor fit is attribut-
able to the measurement and structural aspects of the solution. For
instance, consider the scenario where the measurement model in Figure
3.2A is well specified (i.e., good-fitting, strong and interpretable factor
loadings and factor correlations), but the researcher begins by testing the
structural model shown in Figure 3.2B. Although poor fit would be due to
the misspecified structural model (i.e., inability to reproduce the Factor X
and Factor Y relationship), the researcher may falsely suspect the measure-
ment aspect of the model. In most cases, poor fit cannot arise from the
structural portion of a CFA measurement model because the factors are
usually specified as freely intercorrelated. Thus, CFA solutions are a useful
prelude to SEM models that aim to reproduce the relationships among
latent variables with a more parsimonious set of structural parameters.

PARAMETERS OF A CFA MODEL

All CFA models contain factor loadings, unique variances, and factor vari-
ances. Factor loadings are the regression slopes for predicting the indica-
tors from the latent factor. Unique variance is variance in the indicator that
is not accounted for by the latent factors. Unique variance is typically pre-
sumed to be measurement error and is thus often referred to as such (other
synonymous terms include “error variance” and “indicator unreliability”).
In an unstandardized solution, a factor variance expresses the sample vari-
ability or dispersion of the factor; that is, the extent to which sample par-
ticipants’ relative standing on the latent dimension is similar or different. If
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substantively justified, a CFA may include error covariances (referred to as
“correlated uniquenesses,” “correlated residuals,” or “correlated errors”),
which suggest that two indicators covary for reasons other than the shared
influence of the latent factor (e.g., see Figure 3.1C). In CFA solutions,
error covariances are often specified on the basis of method effects (e.g.,
the indicators were measured by a common method), although other
sources of these relationships are possible. When the CFA solution con-
sists of two or more factors, a factor covariance (a “factor correlation”
being the completely standardized counterpart) is usually specified to esti-
mate the relationship between the latent dimensions. However, one may
fix factor covariances to zero, akin to an orthogonal EFA solution.

CFA is often confined to the analysis of variance–covariance structures.
In this instance, the aforementioned parameters (factor loadings, error vari-
ances and covariances, factor variances and covariances) are estimated to
reproduce the input variance–covariance matrix. The analysis of covariance
structures is based on the implicit assumption that indicators are measured
as deviations from their means (i.e., all indicator means equal zero). How-
ever, the CFA model can be expanded to include the analysis of mean
structures, in which case the CFA parameters also strive to reproduce the
observed sample means of the indicators (which are included along with the
sample variances and covariances as input data). Accordingly, such CFA
models also include parameter estimates of the indicator intercepts (pre-
dicted value of the indicator when the factor is zero) and the latent factor
means, which are often used in multiple-groups CFA to test whether distinct
groups differ in their relative standing on latent dimensions (see Chapter 7).

Latent variables in CFA may be either exogenous or endogenous. An
exogenous variable is a variable that is not caused by other variables in the
solution (such as Factor X in Figure 3.2B). Conversely, an endogenous vari-
able is caused by one or more variables in the model (i.e., other variables
in the solution exert direct effects on the variable, as in Factor Y in Figure
3.2B). Thus, exogenous variables can be viewed as synonymous to X, inde-
pendent, or predictor (causal) variables. Similarly, endogenous variables
are equivalent to Y, dependent, or criterion (outcome) variables. However,
in the case of structural models, an endogenous variable may be the cause
of another endogenous variable, as is the case of Factor Z in Figure 3.2B.

CFAs are typically considered to be exogenous (latent X) variable
solutions (e.g., Figure 3.2A). However, when the CFA analysis includes
covariates (i.e., predictors of the latent factors or indicators as in MIMIC
models; Chapter 7) or higher-order factors (see Chapter 8), the latent fac-
tors are endogenous (latent Y). Even when the CFA is a pure measurement
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model, some researchers (e.g., methodologists using LISREL software)
choose to specify the analysis as a latent Y solution. There are various rea-
sons for this, including the ability to accomplish useful specification tricks
in LISREL (e.g., LISREL specifications for scale reliability evaluation;
Chapter 8), greater simplicity, and the fact that many statistical papers use
latent Y specifications to present information. The issue of “latent X” ver-
sus “latent Y” CFA specification is not relevant to many latent variable
software programs (e.g., Mplus, EQS, Amos), which on the surface do not
appear to rely on matrix operations. In LISREL, specifying a pure CFA
measurement model as a latent X or latent Y solution has no impact on the
fit and parameter estimates of the solution.

Figures 3.3 and 3.4 present the LISREL notation for the parameters
and matrices of a CFA solution for latent X and latent Y specifications,

Introduction to CFA 55

Name Parameter Matrix Type Description

Lambda-X λx Λx Regression Factor loadings

Theta delta δ Θ δ Variance–covariance Error variances and covariances

Phi φ Φ Variance–covariance Factor variances and covariances

Tau-X τx Mean vector Indicator intercepts

Kappa κ Mean vector Latent means

Xi (Ksi) ξ Vector Names of exogenous variables

FIGURE 3.3. Latent X notation for a two-factor CFA model with one error
covariance. Factor variances, factor means, and indicator intercepts are not
depicted in the path diagram.



respectively. As noted in the preceding paragraph, it is not necessary to
understand this notation in order to specify CFA models in most soft-
ware packages. However, knowledge of this notational system is useful
because most sourcebooks and quantitative papers rely on it to describe
the parameters and equations of CFA and SEM analyses. Consistent with
material presented in context of EFA in Chapter 2, lowercase Greek sym-
bols correspond to specific parameters (i.e., elements of a matrix such as
λ), whereas capital Greek letters reflect an entire matrix (e.g., the full
matrix of factor loadings, Λ). As in EFA, factor loadings are symbolized
by lambdas (λ) with x and y subscripts in the case of exogenous and
endogenous latent variables, respectively. The unidirectional arrows (→)
from the factors (e.g., ξ1, η1) to the indicators (e.g., X1, Y1) depict direct
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FIGURE 3.4. Latent Y notation for a two-factor CFA model with one error
covariance. Factor variances, factor means, and indicator intercepts are not
depicted in the path diagram.

Name Parameter Matrix Type Description

Lambda-Y λy Λy Regression Factor loadings

Theta epsilon ε Θε Variance–covariance Error variances and covariances

Psi ψ Ψ Variance–covariance Factor variances and
covariances

Tau-Y τy Mean vector Indicator intercepts

Alpha α Mean vector Latent means

Eta η Vector Names of endogenous variables



effects (regressions) of the latent dimensions onto the observed mea-
sures; the specific regression coefficients are the lambdas (λ). Thetas (Θ)
represent matrices of indicator error variances and covariances; theta-
delta (Θδ) in the case of indicators of latent X variables, theta-epsilon
(Θε) for indicators of latent Y variables. For notational ease, the symbols
δ and ε are often used in place of θδ and θε, respectively, in reference to
elements of Θδ and Θε (as is done throughout this book). Although uni-
directional arrows connect the thetas to the observed measures (e.g.,
X1–X6), these arrows do not depict regressive paths; that is, Θδ and Θε

are symmetric variance–covariance matrices consisting of error variances
on the diagonal, and error covariances, if any, in the off-diagonal.
Although less common, some notational systems do not use directional
arrows in the depiction of error variances in order to avoid this potential
source of confusion. For instance, one notational variation is to symbol-
ize error variances with ovals because, like latent factors, measurement
errors are not observed.

Factor variances and covariances are notated by phi (φ) and psi (ψ) in
latent X and latent Y models, respectively. Curved, bidirectional arrows are
used to symbolize covariances (correlations); in Figures 3.3 and 3.4,
curved arrows indicate the covariance between the factors (φ21, ψ21) and
the error covariance of the X5 and X6 indicators (δ65, ε65). When relation-
ships are specified as covariances, the researcher is asserting that the vari-
ables are related (e.g., ξ1 and ξ2). However, this specification makes no
claims about the nature of the relationship due to either the lack of knowl-
edge regarding the directionality of the association (e.g., ξ1 → ξ2) or the
unavailability to the analysis of variables purported to account for this
overlap (e.g., ξ1 and ξ2 are related because they share a common cause that
is not represented by observed measures or latent variables in the analy-
sis). Nonetheless, as discussed in Chapter 8, higher-order factor analysis is
a useful approach for explaining the covariances among factors when a
strong theory exists in regard to the patterning of the factor interrelation-
ships.

The parameters in Figures 3.3 and 3.4 also possess numerical sub-
scripts to indicate the specific elements of the relevant matrices. For exam-
ple, λx11 (Figure 3.3) indicates that the X1 measure loads on the first exog-
enous factor (ξ1), and λx21 indicates that X2 also loads on ξ1. This numeric
notation assumes that the indicators were ordered X1, X2, X3, X4, X5, and
X6 in the input variance–covariance matrix. If the input matrix was
arranged in this fashion, the lambda X matrix (Λx) in Figure 3.3 would be
as follows:
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ξ1 ξ2 (3.1)
X1 λx11 0
X2 λx21 0
X3 λx31 0
X4 0 λx42

X5 0 λx52

X6 0 λx62

where the first numerical subscript refers to the row of Λx (i.e., the posi-
tional order of the X indicator) and the second numerical subscript refers
to the column of Λx (i.e., the positional order of the exogenous factors, ξ);
e.g., λx52 conveys that the fifth indicator in the input matrix (X5) loads on
the second latent X factor (ξ2). Thus, Λx and Λy are full matrices whose
dimensions are defined by p rows (number of indicators) and m columns
(number of factors). The zero elements of Λx (e.g., λx12, λx41) indicate the
absence of cross-loadings (e.g., the relationship between X1 and ξ2 is fixed
to zero). This is also depicted in Figures 3.3 and 3.4 by the absence of
directional arrows between certain indicators and factors (e.g., no arrow
connecting ξ2 to X1 in Figure 3.3).

A similar system is used for variances and covariances among factors
(φ in Figure 3.3; ψ in Figure 3.4) and indicator errors (δ and ε in Figures 3.3
and 3.4, respectively). However, because these aspects of the CFA solution
reflect variances and covariances, they are represented by m × m symmetric
matrices with variances on the diagonal and covariances in the off-diagonal.
For example, the phi matrix (Φ) in Figure 3.3 would look as follows:

ξ1 ξ2 (3.2)
ξ1 φ11

ξ2 φ21 φ22

where φ 11and φ 22 are the factor variances, and φ21 is the factor covariance.
Similarly, the theta-delta matrix (Θδ) in Figure 3.3 is the following p × p
symmetric matrix:

X1 X2 X3 X4 X5 X6 (3.3)
X1 δ11

X2 0 δ22

X3 0 0 δ33

X4 0 0 0 δ44

X5 0 0 0 0 δ55

X6 0 0 0 0 δ65 δ66
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where δ11 through δ66 are the indicator errors and δ65 is the covariance of
the measurement errors of indicators X5 and X6. For notational ease, the
diagonal elements are indexed by single digits in Figures 3.3 and 3.4 (e.g.,
δ6 is the same as δ66). The zero elements of Θδ (e.g., δ21) indicate the
absence of error covariances (i.e., these relationships are fixed to zero).

In CFA with mean structures (see Chapter 7), indicator intercepts are
symbolized by tau (τ) and latent exogenous and endogenous means are
symbolized by kappa (κ) and alpha (α), respectively. Because the focus has
been on CFA, only parameters germane to measurement models have been
discussed thus far. LISREL notation also applies to structural components
of models that entail directional relationships among exogenous and
endogenous variables. For instance, gamma (γ, matrix: Γ) denotes regres-
sions between latent X and latent Y variables, and beta (β, matrix: Β) sym-
bolizes directional effects among endogenous variables. Most of the CFA
illustrations provided in this book do not require gamma or beta parame-
ters. Exceptions include CFA with covariates (e.g., MIMIC models, Chap-
ter 7) where the measurement model is regressed on observed background
measures (e.g., a dummy code indicating male vs. female), higher-order
CFA (Chapter 8), and models with formative indicators (Chapter 8).

FUNDAMENTAL EQUATIONS OF A CFA MODEL

CFA aims to reproduce the sample variance–covariance matrix by the
parameter estimates of the measurement solution (e.g., factor loadings,
factor covariances, etc.). To illustrate, Figure 3.3 has been revised such
that parameter estimates have been inserted for all factor loadings, factor
correlation, and indicator errors (see now Figure 3.5). For ease of illustra-
tion, completely standardized values are presented, although the same
concepts and formulas apply to unstandardized solutions. The first set of
measures (X1, X2, X3) are indicators of one latent construct (ξ1), whereas
the second set of measures (X4, X5, X6) are indicators of another latent
construct (ξ2). It could be said, for example, that indicators X4, X5, and
X6 are congeneric (cf. Jöreskog, 1971a) because they share a common fac-
tor (ξ2).3 An indicator would not be considered congeneric if it loaded on
more than one factor.

In the case of congeneric factor loadings, the variance of an indicator
is reproduced by multiplying its squared factor loading by the variance of
the factor, and then summing this product with the indicator’s error vari-
ance. The predicted covariance of two indicators that load on the same fac-
tor is computed as the product of their factor loadings times the variance
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of the factor. The model-implied covariance of two indicators that load on
separate factors is estimated as the product of their factor loadings times
the factor covariance. For example, based on the parameter estimates in
the solution presented in Figure 3.5, the variance of X2 would be repro-
duced by the following equation (using latent X notation):

VAR(X2) = σ22 = λx21
2φ11 + δ2 (3.4)

= .802(1) + .36
= 1.00

In the case of completely standardized solutions (such as the current illustra-
tion), one can reproduce the variance of an indicator by simply squaring its
factor loading (.802) and adding its error (.36), because the factor variance
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Predicted Variances–Covariances (Correlations):

X1       X2       X3       X4       X5       X6

X1  1.00000
X2  0.72000  1.00000
X3  0.76500  0.68000  1.00000
X4  0.36000  0.32000  0.34000  1.00000
X5  0.33750  0.30000  0.31875  0.60000  1.00000
X6  0.31500  0.28000  0.29750  0.56000  0.72500  1.00000

FIGURE 3.5. Reproduction of the input matrix from the parameter estimates of
a two-factor measurement model (completely standardized solution).



will always equal 1.00 (however, the factor variance must be included in this
calculation when dealing with unstandardized solutions). Note that the vari-
ance of ξ2 also equals 1.00 because of the completely standardized model
(e.g., variance of X6 = λx62

2φ22 + δ6 = .702 + .51 = 1.00).
The squared factor loading represents the proportion of variance in

the indicator that is explained by the latent factor (often referred to as a
communality; see Chapter 2). For example, the communality of X2 is:

η 2
22 = λx21

2 (3.5)
= .802

= .64

indicating that ξ1 accounts for 64% of the variance in X2. Similarly, in the
completely standardized solution presented in Figure 3.5, the errors repre-
sent the proportion of variance in the indicators that is not explained by
the latent factor; for example, δ2 = .36, indicating that 36% of the variance
in X2 is unique variance (e.g., measurement error). These errors (residual
variances) can be readily calculated as 1 minus the squared factor loading.
Using the X2 indicator, the computation would be

δ2 = 1 – λx21
2 (3.6)

= 1 – .802

= .36

The predicted covariance (correlation) between X2 and X3 would be
estimated as follows:

COV(X2, X3) = σ 3,2 = λx21φ11λx31 (3.7)
= (.80)(1)(.85)
= .68

As before, in the case of completely standardized solutions the factor vari-
ance will always equal 1.00, so the predicted correlation between two con-
generic indicators can be calculated by the product of their factor loadings;
for example, model-implied correlation of X4, X5 = .80(.75) = .60.

The predicted covariance (correlation) between X3 and X4 (indicators
that load on separate factors) would be estimated as follows:

COV(X3, X4) = σ 4,3 = λx31φ21λx42 (3.8)
= (.85)(.50)(.80)
= .34
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Note that the factor correlation (φ21) rather than the factor variance is used
in this calculation.

Figure 3.5 presents the 6 variances and 15 covariances (completely
standardized) that are estimated by the two-factor measurement model.
This model also contains a correlation between the errors of the X5 and X6
indicators (δ65 = .20). In this instance, the covariation between the indica-
tors is not accounted for fully by the latent factor (ξ2); that is, X5 and X6
share additional variance owing to influences other than the latent con-
struct (e.g., method effects). Thus, the equation to calculate the predicted
correlation of X5 and X6 includes the correlated error:

COV(X5, X6) = σ 6,5 = (λx52φ22λx62) + δ65 (3.9)
= (.75)(1)(.70) + .20
= .725

CFA MODEL IDENTIFICATION

In order to estimate the parameters in CFA, the measurement model must
be identified. A model is identified if, on the basis of known information
(i.e., the variances and covariances in the sample input matrix), it is possi-
ble to obtain a unique set of parameter estimates for each parameter in the
model whose values are unknown (e.g., factor loadings, factor correla-
tions, etc.). Model identification pertains in part to the difference between
the number of freely estimated model parameters and the number of
pieces of information in the input variance–covariance matrix. Before
addressing this issue, an aspect of identification specific to the analysis of
latent variables is discussed—scaling the latent variable.

Scaling the Latent Variable

In order to conduct a CFA, every latent variable must have its scale identi-
fied. By nature, latent variables are unobserved and thus have no defined
metrics (units of measurement). Thus, these units of measurement must
be set by the researcher. In CFA, this is typically accomplished in one of
two ways.

In the first and by far the most popular method, the researcher fixes
the metric of the latent variable to be the same as one of its indicators. The
indicator selected to pass its metric onto the latent factor is often referred
to as a marker or reference indicator. The guidelines for selecting and speci-
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fying marker indicators are discussed in Chapter 4. When a marker indica-
tor is specified, a portion of its sample variance is passed on to the latent
variable. Using Figure 3.5, suppose X1 was selected as the marker indica-
tor for ξ1 and had a sample variance (σ11) of 16. Because X1 had a com-
pletely standardized factor loading on ξ1 of .90, 81% of its variance was
explained by ξ1; .902 = .81 (cf. Eq. 3.5). Accordingly, 81% of the sample
variance in X1 is passed on to ξ1 to represent the factor variance of ξ1:

φ11 = λx11
2σ11 (3.10)

= (.81)16
= 12.96

As will be shown in Chapter 4, these estimates are part of the unstandard-
ized CFA solution.

In the second method, the variance of the latent variable is fixed to a
specific value, usually 1.00. Consequently, a standardized and a completely
standardized solution are produced. Although the latent variables have
been standardized (i.e., their variances are fixed to 1.0), the fit of this
model is identical to the unstandardized model (i.e., models estimated
using marker indicators). While useful in some circumstances (e.g., as a
parallel to the traditional EFA model), this method is used less often than
the marker indicator approach. The former strategy produces an unstan-
dardized solution (in addition to a completely standardized solution),
which is useful for several purposes, such as tests of measurement
invariance across groups (Chapter 7) and evaluations of scale reliability
(Chapter 8).

Statistical Identification

Besides scaling the latent variable, the parameters of a CFA model can be
estimated only if the number of freely estimated parameters does not
exceed the number of pieces of information in the input variance–
covariance matrix. The concept was introduced in Chapter 2 in context of
the identification of EFA models estimated by ML. A model is under-
identified when the number of unknown (freely estimated) parameters
exceeds the number of pieces of known information (i.e., elements of the
input variance–covariance matrix). An underidentified model cannot be
solved because there are an infinite number of parameter estimates that
result in perfect model fit. To illustrate, consider the following basic equa-
tion:
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x + y = 7 (3.11)

In this instance, there are two unknowns (x and y), and one known (x + y
= 7). This equation is underidentified because the number of unknown
parameters (x and y) exceeds the known information; consequently, there
are an infinite number of pairs of values that x and y could take on to solve
for x + y = 7 (x = 1, y = 6; x = 2, y = 5, etc.). In the context of CFA, consider
the model depicted in Figure 3.6A. In CFA, the knowns are usually the
sample variances and covariances of the input indicators. When the CFA
involves the analysis of mean structures, the sample means of the indica-
tors are also included in the count of pieces of known information, and the
indicator intercepts and latent means are included in the count of parame-
ter estimates (see Chapter 7). For the model depicted in Figure 3.6A, the
input matrix would be comprised of three knowns (pieces of information):
the variances of X1 and X2, and the covariance of X1 and X2. The
unknowns of the CFA solution are the freely estimated model parameters.
In the Figure 3.6A model, there are 4 freely estimated parameters: 2 factor
loadings (λx11, λx21), and 2 indicator errors (δ1, δ2). In this example, the
metric of ξ1 was set by fixing its variance to 1.0. Thus, because the factor
variance (φ11) was fixed, it is not included in the count of unknowns.
Alternatively, we may have opted to define the metric of ξ1 by choosing
either X1 or X2 to serve as a marker indicator. In this case, the factor vari-
ance (φ11) would contribute to the count of freely estimated parameters,
but the factor loading of the marker indicator would not be included in
this tally because it was fixed to pass its metric on to ξ1 (see Chapter 4 for
more details). Regardless of which method is used to define the units of
measurement of ξ1, the count of freely estimated parameters in Figure
3.6A equals 4.

Thus, the CFA model in Figure 3.6A is underidentified because the
number of unknowns (4 freely estimated parameters) exceeds the number
of knowns (3 elements of the input matrix = 2 variances, 1 covariance).
This model would aim to reproduce the sample covariance of X1 and X2.
Suppose, for example, this sample covariance corresponds to a correlation
of .64. There are an infinite number of set of values that λx11, λx21, δ1, and
δ2 could take on to reproduce an X1–X2 correlation of .64. Recall that in a
completely standardized solution, the predicted correlation between two
indicators that load on the same factor is the product of their factor load-
ings. Thus, there are endless pairs of values that could be estimated for λx11

and λx21 that would produce a perfectly fitting model (e.g., λx11 = .80, λx21 =
.80; λx11 = .90, λx21 = .711; λx11 = .75, λx21 = .853, etc.).
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Model A: Under-Identified (df = –1)
Input Matrix (3 elements)

X1 X2
X1 σ 11
X2 σ 21 σ 22

Freely Estimated Model Parameters = 4
(e.g., 2 factor loadings, 2 error variances)

Model B: Just-Identified (df = 0)
Input Matrix (6 elements)

X1 X2 X3
X1 σ 11
X2 σ 21 σ 22
X3 σ 31 σ 32 σ 33

Freely Estimated Model Parameters = 6
(e.g., 3 factor loadings, 3 error variances)

Model C: Under-Identified (df = –1)
Input Matrix (6 elements)

X1 X2 X3
X1 σ 11
X2 σ 21 σ 22
X3 σ 31 σ 32 σ 33

Freely Estimated Model Parameters = 7
(e.g., 3 factor loadings, 3 error variances, 1
error covariance)

FIGURE 3.6. Examples of underidentified and just-identified CFA models.



Incidentally, it would be possible to identify the Figure 3.6A model if
additional constraints are imposed on the solution. For instance, the
researcher could add the restriction of constraining the factor loadings to
equality. In this case, the number of knowns (3) would equal the number
of unknowns (3) and the model would be just-identified. As discussed in
further detail in the next paragraph, in just-identified models there exists
one unique set of parameter estimates that perfectly fit the data. In the cur-
rent illustration, the only factor loading parameter estimate that would
reproduce the observed X1–X2 correlation (.64) is .80; λx11 = .80 and λx21 =
.80, solved by imposing the equality constraint. Although these con-
straints might assist in model identification by reducing the number of
freely estimated parameters (such as in the current example), such restric-
tions are often unreasonable on the basis of evidence or theory.

Unlike underidentified models, just-identified models can be “solved.”
In fact, because the number of knowns equals the number of unknowns, in
just-identified models, there exists a single set of parameter estimates that
perfectly reproduce the input matrix. Before further applying this concept to
CFA, consider this example from simultaneous equations algebra:

x + y = 7 (3.12)
3x – y = 1

In this example, the number of unknowns (x, y) equals the number of
knowns (x + y = 7, 3x – y = 1). Through basic algebraic manipulation, it
can be readily determined that x = 2 and y = 5; that is, there is only one
possible pair of values for x and y.

Now consider the CFA model in Figure 3.6B. In this example, the
input matrix consists of 6 knowns (3 variances, 3 covariances), and the
model consists of 6 freely estimated parameters: three factor loadings and
three indicator errors (again assume that the variance of ξ1 was fixed to
1.0). This CFA model is just-identified and would produce a unique set of
parameter estimates (λx11, λx21, λx31, δ1, δ2, δ3) that perfectly reproduce
the correlations among X1, X2, and X3 (see Appendix 3.2). Thus, al-
though just-identified CFA models can be fit to the sample input matrix,
goodness-of-model-fit evaluation does not apply because, by nature, such
solutions always have perfect fit. This is also why goodness of fit does not
apply to traditional statistical analyses such as multiple regression; that is,
these models are inherently just-identified. For instance, in OLS multiple
regression, all observed variables are connected to one another either by
direct effects, X1, X2 → Y, or freely estimated correlations, X1 ↔ X2.
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It is important to note that while a CFA model of a construct consist-
ing of 3 observed measures may meet the conditions of identification (as
in Figure 3.6B), this is true only if the errors of the indicators are not cor-
related with each other. For instance, the model depicted in Figure 3.6C is
identical to Figure 3.6B, with the exception of a correlated residual
between indicators X2 and X3. This additional parameter (δ32) now brings
the count of freely estimated parameters to 7, which exceeds the number
of elements of the input variance–covariance matrix (6). Thus, the Figure
3.6C model is underidentified and cannot be fit to the sample data.

A model is overidentified when the number of knowns (i.e., number of
variances and covariances in the input matrix) exceeds the number of
freely estimated model parameters. For example, the one-factor model
depicted in Figure 3.7 (Model A) is structurally overidentified because
there are 10 elements of the input matrix (4 variances for X1–X4, 6
covariances), but only 8 freely estimated parameters (4 factor loadings, 4
error variances; the variance of ξ1 is fixed to 1.0). The difference in the
number of knowns (b) and the number of unknowns (a; i.e., freely esti-
mated parameters) constitutes the model’s degrees of freedom (df). Over-
identified solutions have positive df, just-identified models have 0 df
(because the number of knowns equals the number of unknowns), and
underidentified models have negative df (cannot be solved or fit to the
data). Thus, the Figure 3.7A model is overidentified with df = 2:

df = b – a (3.13)
= 10 – 8
= 2

The second model in Figure 3.7 (Model B) is also overidentified with
df = 1 (assuming that ξ1 and ξ2 have a non-zero correlation; see discussion
of “empirical underidentification” below). As in the Figure 3.7A solution,
there are 10 elements of the input matrix. However, the Figure 3.7B model
consists of 9 freely estimated parameters (4 factor loadings, 4 error vari-
ances, 1 factor covariance), thus resulting in 1 df.

As a final example of an overidentified solution, consider the mea-
surement model that was presented in Figure 3.5. In this case, there are 21
pieces of information in the input matrix (6 variances, 15 covariances).
The reader may note that it becomes cumbersome to count the elements of
the input matrix as the number of variables increases. Fortunately, the fol-
lowing formula, initially presented in Chapter 2 (Eq. 2.8), readily provides
this count:
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b = p(p + 1) / 2 (3.14)

where b is the number of elements of the input matrix, and p is the number
of indicators included in the input matrix. Thus, in the Figure 3.5 model
involving 6 indicators (X1–X6):

b = 6(6 + 1) / 2 = 21
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Model A: Over-Identified (df = 2)
Input Matrix (10 elements)

X1 X2 X3 X4
X1 σ 11

X2 σ 21 σ 22

X3 σ 31 σ 32 σ 33

X4 σ 41 σ 42 σ 43 σ 44

Freely Estimated Model Parameters = 8
(e.g., 4 factor loadings, 4 error variances)

Model B: Over-Identified (df = 1)
Input Matrix (10 elements)

X1 X2 X3 X4
X1 σ 11

X2 σ 21 σ 22

X3 σ 31 σ 32 σ 33

X4 σ 41 σ 42 σ 43 σ 44

Freely Estimated Model Parameters
= 9 (e.g., 4 factor loadings, 4 error
variances, 1 factor covariance)

(cont.)

FIGURE 3.7. Examples of overidentified and empirically underidentified CFA
models. In all examples, the metric of the latent factor is defined by fixing its vari-
ance to 1.0.



reflecting the 6 variances (p) and the 15 covariances [p(p – 1) / 2].
The specification of the Figure 3.5 model entails 14 freely estimated

parameters (in this example, assume that the metric of ξ1 and ξ2 was set by
selecting X1 and X4 as marker indicators): 4 factor loadings, 6 error vari-
ances, 1 error covariance, 2 factor variances, 1 factor covariance. The load-
ings of X1 and X4 are not included in this count because they were fixed in
order to pass their metrics onto ξ1 and ξ2. Therefore, this model is
overidentified with df = 7 (21 knowns minus 14 unknowns).
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Model C: Empirically Under-Identified (df = 0)
Input Matrix (6 elements)

X1 X2 X3
X1 σ 11

X2 σ 21 σ 22

X3 σ 31* σ 32* σ 33

*σ 31 = 0, *σ 32 = 0

Freely Estimated Model Parameters = 6
(e.g., 3 factor loadings, 3 error
variances)

Model D: Empirically Under-Identified (df = 1)
Input Matrix (10 elements)

X1 X2 X3 X4
X1 σ 11

X2 σ 21 σ 22

X3 σ 31
* σ 32

* σ 33

X4 σ 41
* σ 42

* σ 43 σ 44

*σ 31 = 0, *σ 32 = 0, *σ 41 = 0,
*σ 42 = 0

Freely Estimated Model Parameters
= 7 (e.g., 3 factor loadings, 3 error
variances, 1 error covariance)

FIGURE 3.7. (cont.)



Degrees of freedom are used in many descriptive indices of goodness of
model fit (such as model χ2; see the “Descriptive Goodness of Fit Indices”
section of this chapter). Indeed, an important aspect of overidentified
solutions is that goodness-of-fit evaluation applies—specifically, how well
the model is able to reproduce the input variances and covariances (i.e.,
the input matrix) using a lesser number of unknowns (i.e., freely esti-
mated model parameters). Thus, as in just-identified models, the available
known information indicates that there is one best value for each freely
estimated parameter in the overidentified solution. Unlike just-identified
models, overidentified models rarely fit the data perfectly (i.e., a per-
fectly fitting model is one whose parameter estimates recreate the input
variance–covariance matrix exactly). The principles of goodness of fit are
discussed in fuller detail in the last section of this chapter.

Specification of a model to have at least zero dfs is a necessary but not
sufficient condition for identification. Figure 3.7 also illustrates examples
of empirically underidentified solutions (Kenny, 1979). In an empirically
underidentified solution, the model is statistically just- or overidentified,
but aspects of the input matrix prevent the analysis from obtaining a
unique and valid set of parameter estimates. The most obvious example of
empirical underidentification would be the case where all covariances in
the input matrix equal 0. However, empirical underidentification can
result from other patterns of (non)relationships in the input data. For
example, Figure 3.7C depicts a model that is identical to the just-identified
model presented in Figure 3.6B, yet its input matrix reveals an absence of a
relationship between X3 and X1 and X2. This aspect of the input matrix
would render the Figure 3.7C model functionally equivalent to the
underidentified solution presented in Figure 3.6A. Similarly, Figure 3.7D
represents a model that is identical to the overidentified model in Figure
3.7B. However, because the factor correlation is 0 (due to a lack of rela-
tionship of X1 and X2 with X3 and X4), this solution would be analogous
to simultaneously attempting to estimate two Figure 3.6A solutions
(underidentified). For these and other reasons (e.g., increased power and
precision of parameter estimates; cf. Marsh, Hau, Balla, & Grayson, 1998),
methodologists recommend that latent factors be defined by a minimum of
three indicators to avoid this possible source of underidentification; for
example, even if φ21 = 0, a solution for the Figure 3.7D model could be
obtained if ξ1 and ξ2 were measured by three indicators each.

Empirical underidentification will also occur if the marker indicator
selected to define the metric of the latent variable is not correlated with the
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other indicators. For instance, suppose that in the Figure 3.7A model, X1
was used as the marker indicator for ξ1 but was not correlated with X2, X3,
and X4 (i.e., σ21, σ31, and σ41 were not significantly different from 0). Con-
sequently, λx11 would equal 0 and thus no variance would be passed onto
ξ1 (φ11 = λx11

2σ11 = 0σ11 = 0; cf. Eq. 3.10), producing an empirically
underidentified solution.

If an attempt is made to fit an empirically underidentified model, the
computer software will fail to yield a solution or will provide an improper
solution (usually accompanied by error messages or warnings). For exam-
ple, one possible consequence is so-called Heywood cases, which refer to
parameter estimates that have out-of-range values (e.g., negative indicator
error variances). Improper solutions may arise from a variety of causes,
such as poorly specified models (e.g., in Figure 3.7C, X3 is not a reason-
able indicator of ξ1) and problems with the input matrix (e.g., pairwise
deletion, collinearities, small sample size; cf. Wothke, 1993). These prob-
lems are discussed in detail in Chapter 5.

Guidelines for Model Identification

On the basis of the preceding discussion, some basic guidelines for model
identification can be summarized:

1. Regardless of the complexity of the model (e.g., one-factor vs. mul-
tiple factors, size of indicator set), latent variables must be scaled by either
specifying marker indicators or fixing the variance of the factor (usually to
a value of 1.0);

2. Regardless of the complexity of the model, the number of pieces of
information in the input matrix (e.g., indicator variances and covariances)
must equal or exceed the number of freely estimated model parameters
(e.g., factor loadings, factor variances/covariances, indicator error vari-
ances/covariances);

3. In the case of one-factor models, a minimum of three indicators is
required. When three indicators are used (and no correlated errors are
specified; e.g., Figure 3.6B), the one-factor solution is just-identified and
goodness-of-fit evaluation does not apply, although this model can still be
evaluated in terms of the interpretability and strength of its parameter esti-
mates (e.g., magnitude of factor loadings). When four or more indicators
are used (and no correlated errors are specified; e.g., Figure 3.7A), the
model is overidentified (i.e., there are more elements of the input matrix
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than freely estimated model parameters) and goodness of fit can be used in
the evaluation of the acceptability of the solution;

4. In the case of models that entail two or more factors and two indi-
cators per latent construct, the solution will be overidentified, provided
that every latent variable is correlated with at least one other latent vari-
able and the errors between indicators are uncorrelated (e.g., Figure 3.7B).
However, because such solutions are susceptible to empirical under-
identification (e.g., Figure 3.7D), a minimum of three indicators per latent
variable is recommended.

These guidelines assume models where each indicator loads on only
one latent factor and are free of correlated measurement error (i.e., Θ is a
diagonal matrix and thus all off-diagonal elements equal 0). As discussed
in Chapter 5, the issue of identification is more complicated in models that
involve double-loading indicators (i.e., noncongeneric indicators) or corre-
lated indicator errors (e.g., Figure 3.6C).

ESTIMATION OF CFA MODEL PARAMETERS

The objective of CFA is to obtain estimates for each parameter of the mea-
surement model (i.e., factor loadings, factor variances and covariances,
indicator error variances and possibly error covariances) that produce a
predicted variance–covariance matrix (symbolized as Σ) that resembles the
sample variance–covariance matrix (symbolized as S) as closely as possi-
ble. For instance, in overidentified models (such as Figure 3.7A), perfect
fit is rarely achieved (i.e., Σ ≠ S). Thus, in the case of a CFA model such as
Figure 3.7A, the goal of the analysis is to find a set of factor loadings (λx11,
λx21, λx31, λx41) that yield a predicted covariance matrix (Σ) that best repro-
duces the input matrix (S); for example, find parameter estimates for λx11

and λx21 such that the predicted correlation between X1 and X2
(λx11φ11λx21) closely approximates the sample correlation of these indica-
tors (σ21) (although in the actual estimation process, this occurs simulta-
neously for all parameters and implied covariances). This process entails a
fitting function, a mathematical operation to minimize the difference
between Σ and S. By far, the fitting function most widely used in applied
CFA research (and SEM, in general) is maximum likelihood (ML). The fit-
ting function that is minimized in ML is:

FML = ln|S| – ln|Σ| + trace[(S)(Σ-1)] – p (3.15)
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where |S| is the determinant of the input variance–covariance matrix, |Σ| is
the determinant of the predicted variance–covariance matrix, p is the order
of the input matrix (i.e., the number of input indicators), and ln is the nat-
ural logarithm. Although a full explication of this function is beyond the
scope of this chapter (cf. Bollen, 1989; Eliason, 1993), a few observations
are made in an effort to foster its conceptual understanding (see also
Appendix 3.3). The determinant and trace summarize important informa-
tion about matrices such as S and Σ. The determinant is a single number
(i.e., a scalar) that reflects a generalized measure of variance for the entire
set of variables contained in the matrix. The trace of a matrix is the sum of
values on the diagonal (e.g., in a variance–covariance matrix, the trace is
the sum of variances). The objective of ML is to minimize the differences
between these matrix summaries (i.e., the determinant and trace) for S
and Σ. The operations of this formula are most clearly illustrated in the
context of a perfectly fitting model, as quoted from Jaccard and Wan
(1996):

In this case, the determinant of S will equal the determinant of Σ, and the
difference between the logs of these determinants will equal 0. Similarly,
(S)(Σ-1) will equal an identity matrix with all ones in the diagonal. When the
diagonal elements are summed (via the trace function), the result will be the
value of p. Subtracting p from this value yields 0. Thus, when there is perfect
model fit, FML equals 0. (pp. 85–86)

The calculation and use of FML is discussed in greater detail later in this
chapter and in Appendix 3.3.

The underlying principle of ML estimation in CFA is to find the
model parameter estimates that maximize the probability of observing the
available data if the data were collected from the same population again. In
other words, ML aims to find the parameter values that make the observed
data most likely (or conversely, maximize the likelihood of the parameters
given the data). Finding the parameter estimates for an overidentified CFA
model is an iterative procedure. That is, the computer program (such as
LISREL, Mplus, EQS, or Amos) begins with an initial set of parameter esti-
mates (referred to as starting values or initial estimates, which can be auto-
matically generated by the software or specified by the user) and repeat-
edly refines these estimates in an effort to reduce the value of FML (i.e.,
minimize the difference between Σ and S). Each refinement of the parame-
ter estimates to minimize FML is an iteration. The program conducts inter-
nal checks to evaluate its progress in obtaining parameter estimates that
best reproduce S (i.e., that result in the lowest FML value). Convergence of
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the model is reached when the program arrives at a set of parameter esti-
mates that cannot be improved upon to further reduce the difference
between Σ and S. In fact, for a given model and S, the researcher may
encounter minor differences across programs in FML, goodness-of-fit indi-
ces, and so forth, as the result of variations across software packages in
minimization procedures and stopping criteria.

Occasionally, a latent variable solution will fail to converge. Conver-
gence is often related to the quality and complexity of the specified model
(e.g., the number of restrictions imposed on the solution) and the ade-
quacy of the starting values. In the case of complex (yet properly specified)
models, convergence may not be reached because the program has stopped
at the maximum number of iterations, which is set by either the program’s
default or a number specified by the user. This problem may be rectified by
simply increasing the maximum number of iterations or possibly using the
preliminary parameter estimates as starting values. However, a program
may also cease before the maximum number of iterations has been reached
because its internal checks indicate that progress is not being made in
obtaining a solution that minimizes FML. Although this can be an indica-
tion of more serious problems such as a grossly misspecified model, this
outcome may stem from more innocuous issues such as the scaling of the
indicators and the adequacy of the starting values.4

Starting values affect the minimization process in a number of ways. If
these initial values are similar to the final model parameter estimates,
fewer iterations are required to reach convergence. Yet if the starting values
are quite different from the final parameter estimates, there is a greater
likelihood of nonconvergence or that the solution will contain Heywood
cases (e.g., communalities > 1.0, negative error variances). Fortunately, the
CFA researcher usually does not need to be concerned about starting val-
ues because most latent variable software programs have incorporated
sophisticated methods for automatically generating these initial estimates
(e.g., Version 8 of LISREL uses the instrumental variables and two-stage
least squares methods to compute starting values). However, in more com-
plex models (such as those involving nonlinear constraints; cf. CFA
approach to scale reliability evaluation in Chapter 8), it is sometimes nec-
essary for the user to provide these values. The strategy for selecting start-
ing values varies somewhat, depending on the type of model (e.g.,
multiple-groups solution, a solution with nonlinear constraints), and thus
only a few broad recommendations are provided here.

It is useful to ensure that starting values are consistent with the metric
of the observed data; for example, starting values for error variances
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should not be greater than the variance of the indicator; initial estimates of
factor variances should not be greater than the observed variance of the
marker indicator. Often, the most important parameters to provide starting
values are the error variances. Initial values can also be generated by
noniterative statistical procedures conducted on the data set (e.g., OLS
estimates) or basic algebraic calculations (cf. Appendix 3.2). If such esti-
mates are not available, these initial estimates may be gleaned from prior
research involving similar models or indicator sets. In addition, some SEM
sourcebooks contain guidelines for calculating starting values when the
researcher can make a reasonable guess about whether the parameter esti-
mates in question constitute a weak, moderate, or strong effect (e.g.,
Bollen, 1989). In the case of complex models, it can be fruitful to begin by
fitting only portions of the model initially, and then use the resulting
parameter estimates as starting values in the larger solution.

One reason why ML is widely used in CFA model estimation is that it
possesses desirable statistical properties, such as the ability to provide
standard errors (SEs) for each of the model’s parameter estimates. These
SEs are used for conducting statistical significance tests of the parameter
estimates (i.e., z = unstandardized parameter estimate divided by its SE)
and for determining the precision of these estimates (e.g., 95% confidence
interval = parameter ±[SE ∗ 1.96]). Moreover, FML is used in the calculation
of many goodness-of-fit indices (see below).

However, it is important to note that ML is only one of many methods
that can be used to estimate CFA and other types of structural equation
models. Indeed, ML has several requirements that render it an unsuitable
estimator in some circumstances. As compared with some estimators, ML
is more prone to Heywood cases. In addition, ML is more likely to produce
markedly distorted solutions if minor misspecifications have been made to
the model. Some key assumptions of ML are that (1) the sample size is
large (asymptotic); (2) the indicators have been measured on continuous
scales (i.e., approximate interval-level data); and (3) the distribution of the
indicators is multivariate normal. The latter two assumptions apply to
indicators of latent factors, not to other observed measures that may exist
in the analysis, such as nominal variables that serve as covariates (e.g., see
MIMIC models, Chapter 7). Although the actual parameter estimates (e.g.,
factor loadings) may not be affected, non-normality in ML analysis can
result in biased standard errors (and hence faulty significance tests) and a
poorly behaved χ2 test of overall model fit. If non-normality is extreme
(e.g., marked floor effects, as would occur if most of the sample responded
to items using the lowest response choice—e.g., 0 on a 0–12 scale), then
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ML will produce incorrect parameter estimates; that is, the assumption of a
linear model is invalid. Thus, in the case of non-normal, continuous indi-
cators, it is better to use a different estimator, such as ML with robust stan-
dard errors and χ2 (MLM; Bentler, 1995). MLM provides the same parame-
ter estimates as ML, but both the model χ2 and standard errors of the
parameter estimates are corrected for non-normality in large samples [e.g.,
MLM produces the Satorra–Bentler scaled (mean adjusted) χ2 in which the
typical normal theory χ2 is divided by a scaling correction to better
approximate χ2 under non-normality]. If one or more of the factor indica-
tors is categorical (or non-normality is extreme), normal theory ML
should not be used. In this instance, estimators such as weighted least
squares (WLS; also known as asymptotic distribution free, ADF), robust
weighted least squares (e.g., WLSMV), and unweighted least squares
(ULS) are more appropriate. WLS can also be used for non-normal, contin-
uous data, although MLM is often preferred, given its ability to outperform
WLS in small and medium-sized samples (Curran, West, & Finch, 1996;
Hu, Bentler, & Kano, 1992). Other limitations of WLS are discussed in
Chapter 9, in the context of a detailed presentation of the most widely
used estimators of non-normal and categorical data.

Because of its widespread popularity, ML is used in most of the exam-
ples in this book. However, the reader should be aware that the vast major-
ity of the principles and procedures discussed in the remaining chapters
will apply, regardless of the type of fitting function that is employed.
Exceptions are noted when important procedural differences exist across
estimators (e.g., χ2 difference testing using the Satorra–Bentler scaled χ2,
Chapter 9).

Illustration

To illustrate the concepts of parameter estimation and FML minimization,
consider this simple example. As shown in Figure 3.8, a basic path model
is tested using single indicators of behavioral inhibition (x), school refusal
(y), and social anxiety (z), and an N = 200 school-age children. Of particu-
lar interest in this example is whether the relationship between behavioral
inhibition (x) and school refusal (y) is fully mediated by social anxiety (z).
Although the model is somewhat unrealistic (e.g., it assumes no measure-
ment error in x, y, and z and does not conform to the typical strategy for
evaluating mediated effects; cf. Baron & Kenny, 1986), its simplified
nature will foster the illustration of the concepts and calculations intro-
duced in the preceding and subsequent sections. Note that two of the
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effects in this model are tautological, meaning that the paths between x and
z and z and y must equal their observed relationships; in other words,
given the way that the model is specified (e.g., x and z, and z and y are
linked by direct effects), full reproduction of their observed covariances
(correlations) is guaranteed (for algebraic proof of this fact, see Jaccard &
Wan, 1996). However, the model also possesses one nontautological (i.e.,
overidentified) relationship involving x and y. In other words, although
the model will generate a unique set of parameter estimates (i.e., paths
between x and z and z and y, variance of x, residual variances of z and y),
complete reproduction of the observed relationship between x and y is not
ensured. Specifically, using a simple tracing rule (Bollen, 1989; Loehlin,
2004; Wright, 1934), the predicted correlation (and covariance) between x
and y will be the product of the paths between x and z and z and y; that is:

rxy = (pxz)(pzy) (3.16)

(although ML uses a different approach to estimate the model and Σ, the
results are the same). The model-implied relationship between x and y will
not necessarily equal the observed relationship between these variables.
Thus, the proximity of Σ to S depends entirely on the ability of the path
model to reproduce the observed zero-order relationship between x and y.
The model is thus overidentified with 1 df corresponding to the non-
tautological relationship between x and y. As discussed earlier, another
way to determine whether the model has a single df is to take the differ-
ence between the number of elements of the input matrix (b = 6 = 3 vari-
ances, 3 covariances) and the number of freely estimated parameters (a = 5
= 2 regressive paths, the variance of x, and the two residual variances of y
and z). Because the model is overidentified, goodness-of-fit evaluation will
apply. A good-fitting model will be obtained if the model’s parameter esti-
mates reasonably approximate the observed relationship between x and y.
If this model-implied relationship differs considerably from the observed
x/y relationship, a poor-fitting model will result.

As shown in Figure 3.8, the model-implied correlation between x and
y is .30; ryx = (pzx)(pyx) = .6(.5) = .30 (the covariance of x and y is predicted
to be 1.2). This predicted relationship differs from the observed correla-
tion between x and y (.70), thus suggesting a poor-fitting model. Table 3.2
presents the use of SAS PROC IML to calculate the residual matrix (sample
matrix minus the predicted matrix) and FML (see Appendix 3.3 for hand
calculation and a conceptual overview of FML). Because the relationship
between x and y is the only nontautological effect in this model, this is the

Introduction to CFA 77



only element of the residual matrix that can take on a value other than
zero. As seen in Figure 3.8, the residual correlation and covariance for x
and y are .40 and 1.6, respectively. Table 3.2 illustrates the calculation of
FML on the basis of variance–covariance matrices, although the same FML

value would be obtained if correlation matrices were used (yet, as noted
earlier, variance–covariance matrices are often preferred in order to obtain
unstandardized solutions, valid standard errors, and to permit other
options such as multiple-groups evaluation). As shown in Table 3.2, the
fitted model resulted in an FML value of 0.4054651, reflecting the discrep-
ancy between S and Σ. If perfect fit had been attained, all elements of the
residual matrix and FML would be 0. Although this value in and of itself is
not readily interpretable (unless FML = 0), it is used in the calculation of a
variety of goodness-of-fit indices.
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N = 200

Sample correlation matrix Sample variance–covariance matrix
(SDx = SDz = SDy = 2.0) (variance = SD2; covariance =

r21SD1SD2)
x z y x z y

x 1.00 0.60 0.70 x 4.0 2.4 2.8
z 0.60 1.00 0.50 z 2.4 4.0 2.0
y 0.70 0.50 1.00 y 2.8 2.0 4.0

Predicted correlation matrix Predicted variance–covariance matrix
(ryx = pzx ∗ pyz = .6 ∗ .5 = .30) σ yx = ryx ∗ SDx ∗ SDy = .30 ∗ 2 ∗ 2 =

1.2, or σ yx = pyz ∗ σ z = .30 ∗ 4 = 1.2)
x z y x z y

x 1.00 0.60 0.30 x 4.0 2.4 1.2
z 0.60 1.00 0.50 z 2.4 4.0 2.0
y 0.30 0.50 1.00 y 1.2 2.0 4.0

Residual correlation matrix Residual variance–covariance matrix
x z y x z y

x 0.00 0.00 0.40 x 0.0 0.0 1.6
z 0.00 0.00 0.00 z 0.0 0.0 0.0
y 0.40 0.00 0.00 y 1.6 0.0 0.0

FIGURE 3.8. Illustration of model estimation of a simple path model.
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TABLE 3.2. SAS PROC IML Syntax and Output for Computing a Residual Matrix
and FML

SAS PROC IML Syntax

PROC IML;
OPTIONS NOCENTER;
*SAMPLE COVARIANCE MATRIX;
S = {4.0 2.4 2.8,

2.4 4.0 2.0,
2.8 2.0 4.0};

*PREDICTED COVARIANCE MATRIX;
SIGM = {4.0 2.4 1.2,

2.4 4.0 2.0,
1.2 2.0 4.0};

RES = S - SIGM;         *RESIDUAL COVARIANCE MATRIX;
SDET = DET(S);          *DETERMINANT OF THE SAMPLE COVARIANCE MATRIX;
SIGMDET = DET(SIGM);    *DETERMINANT OF THE PREDICTED COVARIANCE MATRIX;
LOGS = LOG(SDET);       *NATURAL LOG OF SAMPLE MATRIX DETERMINANT;
LOGSIGM = LOG(SIGMDET); *NATURAL LOG OF PREDICTED MATRIX DETERMINANT;
SIGMINV = INV(SIGM);    *INVERSE OF PREDICTED MATRIX;
SDIV = S*SIGMINV;       *MULTIPLICATION OF SAMPLE MATRIX AND PREDICTED
INVERSE;
STRACE = TRACE(SDIV);   *TRACE OF THE RESULTING SDIV MATRIX;
SORDER = NROW(S);       *ORDER OF SAMPLE MATRIX = NUMBER OF INDICATORS;
*CALCULATION OF FML;
FML = ABS((LOGS - LOGSIGM) + STRACE - SORDER);
PRINT S;
PRINT SIGM;
PRINT RES;
PRINT SDET;
PRINT SIGMDET;
PRINT LOGS LOGSIGM;
PRINT SDIV;
PRINT STRACE;
PRINT SORDER;
PRINT FML;

Annotated SAS PROC IML Output

The SAS System

S   (the sample variance-covariance matrix)

4       2.4       2.8
2.4         4         2
2.8         2         4

(cont.)
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TABLE 3.2. (cont.)

SIGM (the predicted variance-covariance matrix)

4       2.4       1.2
2.4         4         2
1.2         2         4

RES      (the residual variance-covariance matrix)

0         0       1.6
0         0         0

1.6         0         0

SDET     (the determinant of the sample variance-covariance matrix)

20.48

SIGMDET    (the determinant of the predicted variance-covariance
matrix)

30.72

LOGS   LOGSIGM (the natural logs of the sample and predicted
matrices)

3.0194488 3.4249139

SDIV   (matrix produced by multiplying the sample matrix and the
inverse of the predicted matrix)

1 -0.266667 0.5333333
-3.47E-17         1         0

0.625    -0.375         1

STRACE    (trace of SDIV; sum of diagonal elements = 3)

3

SORDER    (order of the sample matrix = number of input indicators)

3

FML  (F value reflecting minimization of the maximum likelihood
criterion)

0.4054651



DESCRIPTIVE GOODNESS-OF-FIT INDICES

The classic goodness-of-fit index is χ2. Under typical ML model estima-
tion, χ2 is calculated as:

χ2 = FML(N – 1) (3.17)

(except in Mplus, where χ2 is calculated by multiplying FML by N instead
of N – 1). For instance, using N – 1, the Figure 3.8 model χ2 is 80.69
(0.4054651 ∗ 199). Because this model is associated with 1 df, the critical
χ2 value (α = .05) is 3.84 (i.e., χ2 = z2 = 1.962 = 3.8416). The model χ2 of
80.69 exceeds the critical value of 3.84, and thus the null hypothesis that S
= Σ is rejected. Thus, a statistically significant χ2 (latent variable software
programs provide the exact probability value of the model χ2) supports the
alternate hypothesis that S ≠ Σ, meaning that the model estimates do not
sufficiently reproduce the sample variances and covariances (i.e., the
model does not fit the data well).

Although χ2 is steeped in the traditions of ML and SEM (e.g., it was
the first fit index to be developed), it is rarely used in applied research as a
sole index of model fit. Indeed, important criticisms of χ2 include the fol-
lowing: (1) in many instances (e.g., small N, non-normal data) its underly-
ing distribution is not χ2 distributed (compromising the statistical signifi-
cance tests of the model χ2); (2) it is inflated by sample size (e.g., if N were
to equal 100 in the Figure 3.8 model, χ2 = 40.14), and thus large N solu-
tions are routinely rejected on the basis of χ2 even when differences
between S and Σ are negligible; and (3) it is based on the very stringent
hypothesis that S = Σ. As discussed below, many alternative fit indices are
based on less stringent standards such as “reasonable” fit and fit relative to
an independence model.5 Nevertheless, χ2 is used for other purposes, such
as nested model comparisons (see Chapters 4, 5, and 7) and the calcula-
tion of other fit indices (e.g., the Tucker–Lewis index; see below). While
χ2 is routinely reported in CFA research, other fit indices are usually relied
on more heavily in the evaluation of model fit.

Although a host of fit indices are available, only a handful are
described and recommended here. These fit indices were selected on the
basis of their popularity in the applied literature and, more important,
their favorable performance in Monte Carlo research. Other widely used
indices such as the goodness-of-fit index and adjusted goodness-of-fit
index are not included because of evidence of their poor behavior in simu-
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lation studies (e.g., Hu & Bentler, 1998; Marsh, Balla, & McDonald,
1988). However, it should be noted that this topic is surrounded by con-
siderable controversy (e.g., what indices should be used in what contexts?
and what cutoff values should be used to indicate acceptable fit?). Inter-
ested readers are referred to Hu and Bentler (1995, 1998, 1999) for more
information.

Fit indices can be broadly characterized as falling under three catego-
ries: absolute fit, fit adjusting for model parsimony, and comparative or
incremental fit. This typology is not perfect, as some fit indices, such as
the Tucker–Lewis index, have features of more than one category. Most
latent variable software packages (e.g., LISREL, Mplus, Amos, EQS) pro-
vide each of the fit indices described below. Because each type of index
provides different information about model fit, researchers are advised to
consider and report at least one index from each category when evaluating
the fit of their models.

Absolute Fit

Absolute fit indices assess model fit at an absolute level; in various ways,
they evaluate the reasonability of the hypothesis that S = Σ without taking
into account other aspects such as fit in relation to more restricted solu-
tions. Thus, χ2 is an example of an absolute fit index. Another index that
falls in this category is the standardized root mean square residual
(SRMR). Conceptually, the SRMR can be viewed as the average discrep-
ancy between the correlations observed in the input matrix and the correla-
tions predicted by the model (though in actuality, the SRMR is a positive
square root average; see Eq. 3.18). Accordingly, it is derived from a resid-
ual correlation matrix (e.g., see Figure 3.8). A similarly named index, the
root mean square residual (RMR), reflects the average discrepancy be-
tween observed and predicted covariances. However, the RMR can be diffi-
cult to interpret because its value is affected by the metric of the input
variables; thus, the SRMR is generally preferred. In most instances (e.g.,
models involving a single input matrix), the SRMR can be calculated by
(1) summing the squared elements of the residual correlation matrix and
dividing this sum by the number of elements in this matrix (on and below
the diagonal), that is, b = p(p + 1) / 2 (Eq. 3.14), and (2) taking the square
root (SQRT) of this result. For example, the SRMR of the Figure 3.8 solu-
tion would be computed as follows:

SRMR = SQRT[(02+02+02+.42+02+02)/ 6] = .163 (3.18)
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The SRMR can take a range of values between 0.0 and 1.0, with 0.0
indicating a perfect fit (i.e., the smaller the SRMR, the better the model
fit).

Parsimony Correction

Although sometimes grouped under the category of absolute fit (e.g., Hu
& Bentler, 1999), these indices differ from χ2, SRMR, and so forth, by
incorporating a penalty function for poor model parsimony (i.e., number
of freely estimated parameters as expressed by model df). For example,
consider a scenario where two different models, Model A and Model B, fit
a sample matrix (S) equally well at the absolute level; yet the specification
of Model B entails more freely estimated parameters than Model A (i.e.,
Model A has more dfs than Model B). Indices from the parsimony class
would thus favor Model A over Model B because the Model A solution fit
the sample data with fewer freely estimated parameters.

A widely used and recommended index from this category is the root
mean square error of approximation (RMSEA; Steiger & Lind, 1980). The
RMSEA is a population-based index that relies on the noncentral 2 distri-
bution, which is the distribution of the fitting function (e.g., FML) when the
fit of the model is not perfect. The noncentral χ2 distribution includes a
noncentrality parameter (NCP), which expresses the degree of model mis-
specification. The NCP is estimated as χ2 – df (if the result is a negative
number, NCP = 0). When the fit of a model is perfect, NCP = 0 and a cen-
tral χ2 distribution holds. When the fit of the model is not perfect, the
NCP is greater than 0 and shifts the expected value of the distribution to
the right of that of the corresponding central χ2 (cf. Figure 1 in
MacCallum, Browne, & Sugawara, 1996). The RMSEA is an “error of
approximation” index because it assesses the extent to which a model fits
reasonably well in the population (as opposed to testing whether the
model holds exactly in the population; cf. χ2). To foster the conceptual
basis of the calculation of RMSEA, the NCP is rescaled to the quantity d:
d = χ2 – df / (N – 1). The RMSEA is then computed:

RMSEA = SQRT[d / df] (3.19)

where df is the model df (although slight variations exist in some pro-
grams; e.g., Mplus uses N instead of N – 1). As can be seen in Eq. 3.19, the
RMSEA compensates for the effect of model complexity by conveying dis-
crepancy in fit (d) per each df in the model. Thus, it is sensitive to the
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number of model parameters; being a population-based index, the RMSEA
is relatively insensitive to sample size. The RMSEA from the Figure 3.8
solution would be:

RMSEA = SQRT[.40 / 1)] = .63

where d = (80.69 – 1) / 199 = .40.
Although its upper range is unbounded, it is rare to see the RMSEA

exceed 1.0. As with the SRMR, RMSEA values of 0 indicate perfect fit (and
values very close to 0 suggest good model fit).

The noncentral χ2 distribution can be used to obtain confidence inter-
vals for RMSEA (a 90% interval is typically used). The confidence interval
indicates the precision of the RMSEA point estimate. Methodologists rec-
ommend including this confidence interval when reporting the RMSEA
(e.g., MacCallum et al., 1996). However, researchers should be aware that
the width of this interval is affected by sample size and the number of
freely estimated parameters in the model (e.g., unless N is very large, com-
plex models are usually associated with wide RMSEA confidence inter-
vals).6

Moreover, to address the overstringent nature of χ2 (i.e., it tests for
“perfect” fit), Browne and Cudek (1993) have developed a statistical test of
closeness of model fit using the RMSEA. Specifically, “close” fit (CFit) is
operationalized as RMSEA values less than or equal to .05. This test
appears in the output of most software packages as the probability value
that RMSEA is ≤ .05. Nonsignificant probability values (i.e., p > .05) may
be viewed in accord with acceptable model fit, although some
methodologists have argued for stricter guidelines (e.g., p > .50; Jöreskog
& Sörbom, 1996a).

Comparative Fit

Comparative fit indices (also referred to as incremental fit indices; e.g., Hu
& Bentler, 1998) evaluate the fit of a user-specified solution in relation to a
more restricted, nested baseline model. Typically, this baseline model is a
“null” or “independence” model in which the covariances among all input
indicators are fixed to zero, although no such constraints are placed on the
indicator variances. As you might expect, given the relatively liberal crite-
rion of evaluating model fit against a solution positing no relationships
among the variables, comparative fit indices often look more favorable
(i.e., more suggestive of acceptable model fit) than indices from the pre-
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ceding categories. Nevertheless, some indices from this category have been
found to be among the best behaved of the host of indices that have been
introduced in the literature.

One of these indices, the comparative fit index (CFI; Bentler, 1990), is
computed as follows:

CFI = 1 – max[(χ2
T – dfT), 0]/max[(χ2

T – dfT), (χ2
B – dfB), 0] (3.20)

where χ2
T is the χ2 value of the target model (i.e., the model under evalua-

tion), dfT is the df of the target model, χ2
B is the χ2 value of the baseline

model (i.e., the “null” model), and dfB is the df of the baseline model; max
indicates to use the largest value—for example, for the numerator, use (χ2

T

– dfT) or 0, whichever is larger. The χ2
B and dfB of the null model are

included as default output in most software programs. If the user wishes to
obtain these values in programs that do provide this information, χ2

B and
dfB can be calculated by fixing all relationships to 0 (but freely estimating
the indicator variances). The CFI has a range of possible values of 0.0 to
1.0, with values closer to 1.0 implying good model fit. Like the RMSEA,
the CFI is based on the noncentrality parameter (i.e., λ = χ2

T – dfT,
included in standard output of some programs such as LISREL), meaning
that it uses information from expected values of χ2

T or χ2
B (or both, in the

case of the CFI) under the noncentral χ2 distribution associated with S ≠ Σ
(e.g., central χ2 is a special case of the noncentral χ2 distribution when λ =
0). Using the results of the Figure 3.8 model, the CFI would be

CFI = 1 – [(80.69 – 1) / (226.75 – 3)] = .645

Another popular and generally well-behaved index falling under this
category is the Tucker–Lewis index (TLI; Tucker & Lewis, 1973; referred
to as the non-normed fit index in some programs). In addition, the TLI has
features that compensate for the effect of model complexity; that is, as
does the RMSEA, the TLI includes a penalty function for adding freely esti-
mated parameters that do not markedly improve the fit of the model. The
TLI is calculated by the following formula:

TLI = [(χ2
B / dfB) – (χ2

T / dfT)] / [(χ2
B / dfB) – 1] (3.21)

where, as with the CFI, χ2
T is the χ2 value of the target model (i.e., the

model under evaluation), dfT is the df of the target model, χ2
B is the χ2
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value of the baseline model (i.e., the “null” model), and dfB is the df of the
baseline model. Unlike the CFI, the TLI is non-normed, which means that
its values can fall outside the range of 0.0 to 1.0. However, it is interpreted
in a fashion similar to the CFI in that values approaching 1.0 are inter-
preted in accord with good model fit. The TLI for the Figure 3.8 solution is

TLI = [(226.75 / 3) – (80.69 / 1)] / [(226.75 / 3) – 1] = –.068

The collective goodness-of-fit indices from each category point to the
poor fit of the Figure 3.8 solution, χ2(1) = 80.69, p < .05, SRMR = .163,
RMSEA = .633, CFI = .645, TLI = –.068. Although straightforward in the
Figure 3.8 example, the issues and guidelines for using these descriptive
indices of overall model fit are considered more fully in the next section of
this chapter.

Guidelines for Interpreting Goodness-of-Fit Indices

As noted earlier, issues surrounding goodness-of-fit indices are hotly
debated (e.g., which indices should be used? what cutoff criteria should be
applied to indicate good and poor model fit?). If the reader were to peruse
published books and journal articles on this topic, he or she would note
few areas of consensus in regard to recommended fit index cutoffs. Thus, it
would be inappropriate to unequivocally recommend cutoffs in this book.
Indeed, such endeavor is complicated by the fact that fit indices are often
differentially affected by various aspects of the analytic situation such as
sample size, model complexity, estimation method (e.g., ML, WLS),
amount and type of misspecification, normality of data, and type of data
[e.g., TLI and RMSEA tend to falsely reject models when N is small (Hu &
Bentler, 1999); SRMR does not appear to perform well in CFA models
based on categorical indicators (Yu, 2002)]. The reader is referred to Hu
and Bentler (1998, 1999) for evidence and a detailed discussion of how
such aspects may impact the performance of these fit indices (although it
should be again noted that the RMSEA, SRMR, CFI, and TLI were selected
in this book partly on the basis of their overall satisfactory performance in
the Hu and Bentler simulations). It is also important to emphasize that
goodness-of-fit indices are only one aspect of model evaluation. As dis-
cussed in Chapter 4, although model evaluation usually begins with the
examination of these fit indices, it is equally important to examine a solu-
tion in terms of potential areas of localized strain (e.g., are there specific
relationships the model does not adequately reproduce?) and the inter-
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pretability and strength of the resulting parameter estimates (e.g., absence
of Heywood cases; statistical significance, direction, and size of parameter
estimates are in accord with prediction). With these caveats fully in mind,
a few prominent guidelines for fit indices are reviewed.

In one of the more recent and comprehensive evaluations of cutoff cri-
teria, the findings of simulation studies conducted by Hu and Bentler
(1999) suggest the following guidelines. Support for contentions of rea-
sonably good fit between the target model and the observed data (assum-
ing ML estimation) is obtained in instances where (1) SRMR values are
close to .08 or below; (2) RMSEA values are close to .06 or below; and (3)
CFI and TLI values are close to .95 or greater. Hu and Bentler’s (1999) use
of the phrase “close to” is not accidental, because the recommended cutoff
values were found to fluctuate as a function of modeling conditions (e.g.,
type of misspecified model) and whether or not an index was used in com-
bination with other fit indices (e.g., the acceptability of Type I and Type II
error rates often improved when a combination of indices was employed).
Other methodologists have handled these complexities by providing
descriptive anchors for various ranges of fit index values rather than speci-
fying explicit cutoffs. For instance, Browne and Cudeck (1993) propose, as
a rule of thumb, that RMSEA values less than 0.08 suggest adequate model
fit (i.e., a “reasonable error of approximation,” p. 144), RMSEA values less
than 0.05 suggest good model fit, and that models with RMSEA ≥ 0.1
should be rejected (MacCallum et al., 1996, further elaborated on these
guidelines by asserting that the RMSEAs in the range of .08–0.10 suggest
“mediocre” fit). Additional support for the fit of the solution would be evi-
denced by a 90% confidence interval of the RMSEA whose upper limit is
below these cutoff values (e.g., 0.08). As noted earlier, a nonsignificant
CFit (RMSEA < .05) could also be interpreted in accord with acceptable
model fit. Similarly, methodologists have noted that while CFI and TLI val-
ues below .90 should lead the researcher to strongly suspect (reject) the
solution, CFI and TLI values in the range of .90–.95 may be indicative of
acceptable model fit (e.g., Bentler, 1990). However, when fit indices fall in
these “marginal” ranges, it is especially important to consider the consis-
tency of model fit as expressed by the various types of fit indices in tandem
with the particular aspects of the analytic situation; for example, when N is
somewhat small, an RMSEA = .08 may be of less concern if all other indi-
ces are strongly in a range suggesting “good” model fit. Again, this under-
scores the importance of considering fit indices from multiple fit catego-
ries (absolute fit, parsimony correction, comparative fit) in tandem with
examining other relevant aspects of the solution (e.g., localized areas of ill
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fit; interpretability and size of parameter estimates). These aspects of
model evaluation are discussed in Chapter 4.

SUMMARY

This chapter provided a detailed comparison of EFA and CFA. Although
EFA and CFA are based on the common factor model, CFA has the funda-
mental advantage over EFA in that it allows the researcher to control every
aspect of the model specification (e.g., generate an unstandardized solu-
tion, specify correlated errors, place various constraints on the solution,
such as fixing cross-loadings to zero or holding model parameters to
equality). As shown in later chapters, these features allow CFA to address
important research questions for which EFA is not well suited (or incapa-
ble), such as the comparison of factor models across groups (e.g., measure-
ment invariance of tests; Chapter 7), the analysis of multitrait–multi-
method data in construct validation (Chapter 6), the analysis of mean
structures (Chapter 7), scale reliability evaluation (Chapter 8), and the
inclusion of covariates in the factor model (e.g., MIMIC, Chapter 7).

In addition, this chapter introduced the fundamental concepts of CFA
such as model notation, basic equations, model identification, model esti-
mation (e.g., ML), and goodness-of-fit evaluation. The appendices to this
chapter are provided to foster the reader’s understanding of each of these
core principles using data-based illustrations. In Chapter 4, these concepts
will be exemplified and extended in the context of a fully worked-through
CFA of an applied data set.

NOTES

1. Although rarely seen in applied research, it is possible to conduct EFA
using a (unstandardized) variance–covariance matrix. In fact, use of a covariance
matrix in ML EFA would be preferred when the data are not scale-free (i.e., EFAs
based on a correlation and covariance matrix produce markedly different model χ2

values).
2. When measurement error is systematic (e.g., method effects), it can also

lead to positively biased parameter estimates.
3. Historically, the term “congeneric” has been used more strictly to refer to

one-factor measurement models (i.e., a set of indicators that load on one factor).
In this book, the term is used more generally in reference to sets of indicators that
load on just one factor (e.g., multifactorial measurement models that contain no
double-loading indicators).
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4. Some programs (e.g., Mplus) prefer that the indicators submitted to the
latent variable analysis be kept on a similar scale. For instance, problems with con-
vergence may occur if the variances of the indicators are markedly heterogeneous.
This can be resolved by rescaling the indicator(s) by a linear transformation. Say,
for example, that X1, X2, and X3 are measured on 0–8 scales, but X4 has scores
ranging from 1 to 70 (Figure 3.7A). To avoid potential problems with convergence,
X4 can be rescaled simply by dividing its observed scores by 10.

5. An initial attempt to address the shortcomings of χ2 dates back to the sem-
inal structural equation modeling study by Wheaton, Muthén, Alwin, and Sum-
mers (1977). In this study, the authors introduced the χ2/df ratio in attempt to use
χ2 in a manner that would foster more realistic model evaluation. Although the
χ2/df ratio has become very popular in applied research, its use is strongly discour-
aged (in fact, even Wheaton, 1987, subsequently recommended that the χ2/df ratio
not be used). For instance, researchers frequently use this index under the false
understanding that it adjusts for χ2’s excessive power to reject S = Σ when in fact
the χ2/df ratio is equally sensitive to sample size (i.e., N – 1 is used in the calcula-
tion of both χ2 and χ2/df). Other reasons contraindicating the use of the χ2/df ratio
include the fact that it has not undergone the scrutiny of simulation research
(cf. Hu & Bentler, 1998, 1999) and the lack of consistent standards of what χ2/df
value represents good or bad model fit.

6. The assumptions of the noncentral distribution and RMSEA do not hold if
the model is grossly misspecified. For other cautions on the use of RMSEA (e.g.,
impact of non-normality and sample size), the reader is referred to Yuan (2005).

Introduction to CFA 89



CONFIRMATORY FACTOR ANALYSIS FOR APPLIED RESEARCHIntroduction to CFA

Appendix 3.1

Communalities, Model-Implied Correlations,
and Factor Correlations in EFA and CFA

I. COMMUNALITY ESTIMATES

As noted in Chapter 2, the calculation of communalities in orthogonal EFA is
straightforward. In these models, the communality is the sum of squared fac-
tor loadings for a given indicator across all factors. For instance, in the two-
factor model of adolescent antisocial behavior presented in Table 3.1, the
communality of the Y1 indicator is equal to its squared loading on Property
Crimes plus its squared loading on Violent Crimes; that is, .84932 + .17652 =
.75.

Communalities can also be easily computed in CFA. In orthogonal EFA,
this computation is straightforward because the factors are not correlated (i.e.,
the factor loadings reflect the zero-order correlations between the indicator
and the factors). In CFA, this computation is clear-cut because indicators are
typically specified to load on one factor only (i.e., all cross-loadings are fixed
to zero). Thus, the communality is simply the factor loading squared. For
instance, in the CFA, the communality of the Y1 indicator is .79962 = .64 (cf.
Eq. 3.5).

In oblique EFA (or in a CFA where an indicator is specified to load on
two or more factors), the calculation of a communality requires an under-
standing of the path diagram tracing rules and equations (e.g., in this chapter,
see the “Fundamental Equations of a CFA Model” section). Because factors are
intercorrelated in oblique EFA, the factor loadings are partial regression coef-
ficients (pattern matrix). Thus, computation of a communality in oblique EFA
is a function of both the factor loadings and the factor correlations. Below is a
path diagram of the oblique EFA solution from Table 3.1 for the Y1 and Y5
indicators only.
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In this example, the communality of Y1 is

η 2
y1 = λ11

2 + λ12
2 + 2λ11φ21λ12 (3.22)

= .91872 + -.09582 + 2(.9187)(.5722)(–.0958)
= .75

The communality of Y5 is

η 2
y5 = λ52

2 + λ51
2 + 2λ52φ21λ51 (3.23)

= .70432 + .04342 + 2(.7043)(.5722)(.0434)
= .53

Thus, for example, the communality of Y1 is the sum of the unique direct
effects of Property Crimes and Violent Crimes on Y1 (λ11

2 and λ12
2, respec-

tively), and the variance in Y1 that Property Crimes and Violent Crimes
jointly explain [2(λ11)(φ21)(λ12)]. In other words, Property Crimes and Vio-
lent Crimes are correlated (φ21 = .5722) and some portion of the variance in
Y1 that is explained by Property Crimes is also explained by Violent Crimes.

II. MODEL-IMPLIED CORRELATIONS

The quality of the factor solutions is determined in part by how well the
parameter estimates of the solution are able to reproduce the observed correla-
tions of the indicators. The correlations predicted by the parameters of the fac-
tor solution are often referred to as model-implied estimates. The model-
implied correlations from oblique EFA, orthogonal EFA, and CFA are illus-
trated below, again using the Y1 and Y5 indicators as an example.

In the oblique EFA, the model-implied correlation between Y1 and Y5 is

Corr(y5, y1) = λ11λ51 + λ52λ12 + λ11φ21λ52 + λ51φ21λ12 (3.24)
= (.9187)(.0434) + (.7043)(–.0958)

+ (.9187)(.5722)(.7043) + (.0434)(.5722)(–.0958)
= .34

The calculation of the model-implied correlation of Y1 and Y5 is a bit eas-
ier in orthogonal EFA because the factors are not correlated. Thus, the pre-
dicted correlation is calculated solely from the summed cross-products of the
factor loadings:

Corr(y5, y1) = λ11λ51 + λ52λ12 (3.25)
= (.8493)(.2587) + (.6826)(.1765)
= .34
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Again note that the model-implied correlation of Y1 and Y5 is the same in
orthogonal and oblique EFA: the choice of rotation method does not affect the
fit of the factor solution.

In CFA models where each indicator loads on only one factor (cf. Table
3.1, Figure 3.1A), computation of the model-implied correlation is very
straightforward (i.e., although factors are intercorrelated, each indicator loads
on a single factor). The correlation of Y1 and Y5 that is predicted from the
CFA solution is (cf. Eq. 3.8)

Corr(y5, y1) = λ11φ21λ52 (3.26)
= (.7996)(.6224)(.7315)
= .36

III. FACTOR CORRELATIONS

In Chapter 3, it was stated that CFA factor correlations are often higher than
factor correlations emanating from oblique EFA of the same data set. This
occurred in the analyses presented in Table 3.1, where the factor correlations
estimated by oblique EFA and CFA were .57 and .62, respectively. In an
oblique EFA, the model-implied correlation of indicators with primary load-
ings on separate factors can be estimated in part by the indicator cross-load-
ings (cf. Eq. 3.24). In contrast, the model-implied correlation of indicators
loading on separate factors in CFA is estimated solely by the primary loadings
and the factor correlation (cf. Eq. 3.26). For example, as compared with
oblique EFA, in the CFA more burden is on the factor correlation to reproduce
the correlation between Y1 and Y5 because there are no cross-loadings to
assist in this model-implied estimate (cf. Figure 3.1A). Therefore, in the itera-
tive process of establishing CFA parameter estimates that best reproduce the
sample correlation matrix, the magnitude of the factor correlation estimate
may be increased somewhat (relative to oblique EFA) to better account for the
relationships of indicators that load on separate factors (assuming that these
indicators are correlated to some degree).
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Appendix 3.2

Obtaining a Solution
for a Just-Identified Factor Model

Factor analysis typically entails matrix algebra and other mathematical opera-
tions that are very cumbersome to demonstrate and conduct by hand calcula-
tion. However, the solution for a basic, just-identified factor model such as the
one depicted in Figure 3.6B can be calculated on the basis of principles dis-
cussed in this chapter and with the help of the algebra of simultaneous equa-
tions. Consider the following input matrix and just-identified, one-factor
model:

Input matrix:
X1 X2 X3

X1 1.000
X2 0.595 1.000
X3 0.448 0.544 1.000

For ease of notation, let a = λx11, b = λx21, and c = λx31.

As discussed is this chapter, the number of knowns (6 elements of the input
matrix) equals the number of unknowns (6 parameters = 3 factor loadings, 3
errors; the factor variance is fixed to 1.0). Thus, the model is just-identified, and
its parameter estimates will perfectly reproduce the input matrix. It was also dis-
cussed that, for two indicators loading on the same factor, multiplying their fac-
tor loadings provides the model estimate of their zero-order correlation. Because
the current model is just-identified, the products of the loadings will perfectly
reproduce the zero-order relationships among X1, X2, and X3. The systems of
equations are as follows:
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Equation 1. ab = .595
Equation 2. ac = .448
Equation 3. bc = .544

This problem is also just-identified, as there are 3 unknowns (a, b, c) and
3 knowns (the 3 equations). Systems of equations can be solved in various
ways (e.g., substitution, elimination, matrices). In the example, substitution is
used by first solving for a:

Step 1. Rearrange Equations 1 and 2, so that b and c are the outputs.

Equation 1. ab = .595 b = .595/a
Equation 2. ac = .448 c = .448/a
Equation 3. bc = .544

Step 2. Substitute Equations 1 and 2 in Equation 3.

Equation 3. b c = .544
(.595/a)(.448/a) = .544

Step 3. Solve Equation 3.

Equation 3. (.595/a)(.448/a) = .544
.26656/a2 = .544
.26656/.544 = a2

.49 = a2

.70 = a

Step 4. Now that we know that a = .70, it is straightforward to solve for b
and c using the original equations.

Equation 1. .70b = .595 .595/.70 = b b = .85
Equation 2. .70c = .448 .448/.70 = c c = .64

Thus, the factor loadings are .70, .85, and .64, for λx11, λx21, and λx31, respec-
tively. As an accuracy check, note that multiplying these loadings together per-
fectly reproduces the input correlations; that is, .70(.85) = .595, .70(.64) =
.448, .85(.64) = .544.

Step 5. Because this is a completely standardized solution, the errors for
X1, X2, and X3 can be obtained by squaring the loadings and subtracting the
result from 1.0.

δ1 = 1 – .702 = .51
δ2 = 1 – .852 = .2775
δ3 = 1 – .642 = .5904
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Now every unknown parameter in the factor model has been solved, and
the solution is as follows:
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Appendix 3.3

Hand Calculation of FML

for the Figure 3.8 Path Model

Calculation of FML is best left to the computer because the computations
needed to produce this value are quite tedious and complex in most data sets.
However, given the simplicity of the Figure 3.8 model, hand calculation of FML

is presented in effort to foster the reader’s conceptual understanding of the ML
fit function:

FML = ln|S| – ln|Σ| + trace[(S)(Σ-1)] – p

The presentation will focus primarily on the first half of this equation, ln|S| –
ln|Σ|, given its relationship to other widely known statistics (e.g., F ratio, like-
lihood ratio), and the fact that, in this example, the remaining part of
the equation will equal zero. The remaining portion of the FML formula,
trace[(S)(Σ-1)] – p, pertains to the distances of the indicator variances in S and
Σ. In many instances (as in the Figure 3.8 solution), this difference will be
zero because the CFA model perfectly reproduces the observed variance of the
input indicators; cf. σ = λx

2φ1 + δ, and thus trace[(S)(Σ-1)] – p = 3 – 3 = 0 (see
Table 3.2). However, there are some instances where differences in the diago-
nal elements (indicator variances) of S and Σ do not equal zero and thus con-
tribute to FML (e.g., in the CFA evaluation of tau equivalence, see Chapter 7).
But in the Figure 3.8 solution, the value of FML is determined solely by the dif-
ference in the natural logs of the determinants of S and Σ.

DETERMINANTS (|S|, | |)

As noted in Chapter 3, a determinant is a matrix algebra term for a single
number (i.e., a scalar) that reflects a generalized measure of variance for the
entire set of variables contained in a matrix. Stated another way, it is an index
of the amount of nonredundant variance that reflects the extent to which vari-
ables in the matrix are free to vary. This concept is illustrated in the following
zero-order (2 × 2) and multivariate (3 × 3) examples, drawing from the sample
variance–covariance matrix in Figure 3.8.
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Consider the scenario where x and z share none of their variance (i.e.,
rxz = .00). If x and z had SDs = 2.0, the 2 × 2 variance–covariance matrix would
be as follows:

x z
x 4.0 0.0
z 0.0 4.0

The variance and (lack of) covariance of x and z are represented in the follow-
ing Venn diagram:

Using a basic principle of matrix algebra, the determinant of a 2 × 2 matrix,

A =
a b

c d






is |A| = ad – bc

In the present example, A is a variance–covariance matrix and thus the
equation ad – bc represents subtracting the covariance (bc) from the variance
(ad). Solving this equation, 4(4) – 0(0) results in a determinant of 16. This
value indicates that all the variance in the matrix of x and z (4 ∗ 4 = 16) is
nonredundant; that is, x and z are entirely free to vary. Because the Venn dia-
gram indicates no overlapping variance between x and z, the determinant
could be calculated simply by multiplying the variance of x and z.

Consider the situation where x and z share all of their variance (i.e.,
rxz = 1.0). The variance–covariance matrix and Venn diagram would look as
follows:

x z
x 4.0 4.0
z 4.0 4.0

In this case, the determinant equals 0, ad – bc = 4(4) – 4(4) = 0, which
reflects that all the variance in x and z (ad) is redundant (bc); in other words,
there is no generalized variability in this matrix (no freedom to vary). Alterna-
tively, using the Venn diagram, the determinant could be solved by multiply-
ing the variance in x (4) by the unique variance in z (0): 4 ∗ 0 = 0.
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When a matrix has a determinant of 0, it is said to be singular (conversely,
matrices with non-zero determinants are nonsingular), meaning that one or
more rows or columns are linearly dependent on other rows or columns (as
would occur if a variance–covariance was constructed using the subscales and
total score of a questionnaire if the total score is formed by summing the sub-
scales). Because determinants are used in calculating the inverse of a matrix (e.g.,
Σ-1, see FML equation), a singular matrix is problematic because it has no inverse;
the matrix algebra equivalent to division is multiplying a matrix by the inverse of
another matrix; for example, (S)(Σ-1), see FML equation. Thus, many statistics
for the matrix cannot be computed. Users of latent variable software programs
may occasionally encounter error messages stating that a matrix is singular or
nonpositive definite. These errors often stem from linear dependency or some
other problems in the input matrix (e.g., multicollinearity/one or more eigen-
values = 0; use of pairwise deletion as a missing data strategy; N exceeds the
number of input indicators), although the matrix generated by the specified
model must also be positive definite (Wothke, 1993).

Now consider the zero-order relationship of x and z that was observed in
the Figure 3.8 model (rxz = .60). The variance–covariance and Venn diagram
are as follows:

x z
x 4.0 2.4
z 2.4 4.0

The determinant of this matrix is 10.24; ad – bc = 4(4) – 2.4(2.4) = 16 –
5.76 = 10.24. Some of the total variance in x and z (ad = 16) is redundant (bc =
5.76); subtracting bc from ad provides the measure of generalized variability in
this matrix. Also note that dividing bc by ad yields the proportion of shared
variance in x and z: 5.76 / 16 = .36 = r2. Alternatively, using the Venn diagram,
the determinant could be computed by multiplying the variance of x (4) by
the unique variance in z (2.56): 4 ∗ 2.56 = 10.24. The unique variance in z is
calculated by multiplying its variance (4) by its proportion of unique variance
(1 – r2 = .64): 4 ∗ .64 = 2.56.

Computing the determinant for matrices of the order 3 × 3 and higher is
more complicated. In order to begin with a computationally simpler example,
consider the scenario where the correlation between x and z is .60, z and y are
correlated .50, but x and y share none of their variance (i.e., rxy = 0.0). This vari-
ance–covariance matrix and Venn diagram would follow:

x z y
x 4.0 2.4 0.0
z 2.4 4.0 2.0
y 0.0 2.0 4.0
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Using another method from matrix algebra, the determinant of a 3 × 3
matrix,

A =

a b c

d e f

g h i

















is: |A| = (aei – bdi) + (bfg – ceg) + (cdh – afh)

Although there are different approaches to solving for the determinant of
a 3 × 3 matrix (e.g., “butterfly method,” use of minors and their matrices of
cofactors), the above method is computationally similar to the strategy used to
solve for 2 × 2 matrices (although alternate approaches, such as the method of
minors and cofactors, generalize better to matrices of the order of 4 × 4 and
higher; cf. Bollen, 1989). Here, we begin with the first element of the matrix
(a) and multiply it by all other elements on its diagonal (aei). Then, the ele-
ment in the column adjacent to a is selected (b) and is multiplied by the
remaining elements in the diagonal going in the opposite direction of aei (bdi;
compare with method used for 2 × 2 matrices). Note that the remaining ele-
ment in bdi (i.e., i) is obtained by bringing the column [c f i] in front of the
column [a d g]. Then bdi is subtracted from aei, and the process is repeated
two more times for the remaining elements in the first row of A (bfg – ceg, cdh
– afh). The results are then summed.

Applying this method to the above variance–covariance matrix yields a
determinant of 24.96:

aei – bdi: (4.0 ∗ 4.0 ∗ 4.0) – (2.4 ∗ 2.4 ∗ 4.0) = 40.96
bfg – ceg: (2.4 ∗ 2.0 ∗ 0.0) – (0.0 ∗ 4.0 ∗ 0.0) = 0.00
cdh – afh: (0.0 ∗ 2.4 ∗ 2.0) – (4.0 ∗ 2.0 ∗ 2.0) = –16.00

Total: 24.96

Thus, of the total variance in the matrix of x, z, and y (4 ∗ 4 ∗ 4 = 64), a consid-
erable portion is overlapping (39.04) and not included in the determinant.
Note that dividing 39.04 by 64 yields .61, which would reflect R2 if z was
regressed onto x and y (it works out cleanly in this example because x and y
do not correlate; rxz

2 = .36, rzy
2 = .25, .36 + .25 = .61). Indeed, using the Venn

diagram method, we could readily solve for the determinant by multiplying
the variance of x (4) by the variance of y (4) by the unique variance in z
(1.56): 4 ∗ 4 ∗ 1.56 = 24.96; the unique variance in z is computed by subtract-
ing its variance (4) with the variance explained by x (4 ∗ .36 = 1.44) and y (4 ∗
.25 = 1.0); 4 – 1.44 – 1 = 1.56 (again simplified by having no overlap between
x and y).

It is hoped that this provides the reader with a better conceptual under-
standing of a determinant. Let’s now turn to the sample (S) and predicted (Σ)
matrices from Figure 3.8:
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S Σ
x z y x z y

x 4.0 2.4 2.8 x 4.0 2.4 1.2
z 2.4 4.0 2.0 z 2.4 4.0 2.0
y 2.8 2.0 4.0 y 1.2 2.0 4.0

Using the matrix algebra method presented earlier, the determinant of S is
found to be:

aei – bdi: (4.0 ∗ 4.0 ∗ 4.0) – (2.4 ∗ 2.4 ∗ 4.0) = 40.96
bfg – ceg: (2.4 ∗ 2.0 ∗ 2.8) – (2.8 ∗ 4.0 ∗ 2.8) = –17.92
cdh – afh: (2.8 ∗ 2.4 ∗ 2.0) – (4.0 ∗ 2.0 ∗ 2.0) = –2.56

Total: 20.48

Note that this is the same value that was calculated for S by SAS PROC
IML in Table 3.2. Using the same method, the determinant of Σ is found to be
30.72 (the determinants of S and Σ could also be computed by Venn diagrams,
although this would require more time-consuming steps of solving for the
unique and overlapping areas in x, y, and z; e.g., regressing each variable onto
the remaining two variables). Because Σ has more generalized variance (30.72)
than S (20.48), a poor-fitting model may result. The additional nonredundant
variance in Σ is due to the fact that the Figure 3.8 model parameters predicted
less covariance between x and y (σxy = 1.2) than was observed in the sample
data (σxy = 2.8).

DIFFERENCE OF NATURAL LOGS (LN|S| – LN| |)

Returning to the equation for FML, note that the natural logs (ln) of the deter-
minants are used rather than the raw values of the determinants themselves.
The reason for this is as much computational as theoretical. Specifically, logs
have several properties that make working with and interpreting them easier
than other methods. For instance, consider the situation where the probability
of a treatment success is 70% (p = .7), and the probability of no treatment suc-
cess is 30% (q = .3). Converting the probability of success to an odds ratio, OR
= p / (1 – p), yields a value of 2.33 (.7/.3); that is, treatment success is 2.3 times
more likely than nonsuccess. However, the OR for nonsuccess is .429 (.3/.7).
Although it would be helpful to be able to interpret this outcome in a symmet-
rical fashion (i.e., the odds of success are opposite the odds of nonsuccess),
ORs do not have this symmetry (i.e., 2.33, .43). However, taking the natural
log of these ORs provides this symmetry, ln(2.33) = .846, ln(.29) = –.846. This
is one reason why log odds are commonly used in logistic regression. Logs
have other useful properties such as:
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if: a = bc e.g., 20 = 5(4)
then: ln(a) = ln(b) + ln(c) 2.996 = 1.6094 + 1.3863

and thus,

if: a/b = c e.g., 20/5 = 4
then: ln(c) = ln(a) – ln(b) 1.3863 = 2.996 = 1.6094

(within rounding error)

The latter equation is reflected in the first part of the formula for FML. Spe-
cifically, taking the difference in ln|S| and ln|Σ| is equivalent to dividing the
determinant of one of these matrices by the determinant of the other; in fact,
in a few textbooks, this portion of the equation is written as ln(SΣ-1), which
produces the same result as ln|S| – ln|Σ|. Thus, the parallel of ln|S| – ln|Σ| with
the F ratio found in analysis of variance (calculated by dividing one variance
into another) should be apparent. This is also why the likelihood ratio (LR) is
so called, when it fact it is calculated by taking the difference between two log-
likelihoods; LR = 2(LLA – LLO).

Using the results from Figure 3.8, the natural logs of the determinants of
S and Σ are as follows:

ln(S) = ln(20.48) = 3.01945
ln(Σ) = ln(30.72) = 3.42491

The difference between the natural logs of these determinants is .40546,
which equals the value of FML obtained by SAS PROC IML (Table 3.2). The last
part of the equation does not alter this value because the trace of [(S)(Σ-1)]
and order of the matrix (p) both equal 3 (actually, the result of ln|S| – ln|Σ| is a
negative, –.40546, but the absolute value is the obviously the same). Equiva-
lently, we could solve for FML by dividing the raw score values of the determi-
nants of S and Σ, and then derive the natural log of the result; for example,
30.72/20.48 = 1.5, ln(1.5) = .40546; 20.48/30.72 = 0.66667, ln(.66667) = –
.40546 (again illustrating the advantage of natural logs shown in the discus-
sion of log odds).

MODEL 2

Finally, note from Chapter 3 that the model χ2 is calculated by FML(N – 1).
This equation parallels a χ2 formula commonly found in introductory statis-
tics books for testing whether one sample variance (σ2

2) differs from another
variance or a population variance (σ1

2):
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2
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=
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This equation can be readily re-expressed as (σ2
2/σ1

2)(N – 1), of which
the first part is equivalent to ln(σ2

2) – ln(σ1
2), and which, in its entirety, is

equivalent to χ2 = (ln|S| – ln|Σ|)(N – 1) or FML(N – 1) (again, this holds in situ-
ations where the latter half of the FML equation equals 0).
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4

Specification and Interpretation
of CFA Models

This chapter uses a complete, applied example to demonstrate and
extend the concepts of CFA presented in the previous chapters. A two-
factor measurement model of personality (neuroticism, extraversion)
is evaluated using five popular latent variable software programs
(LISREL, Mplus, Amos, EQS, CALIS). The example is used to illustrate
how the acceptability of the CFA solution should be evaluated (e.g.,
overall goodness-of-fit, areas of strain in the solution, interpretability/
strength of parameter estimates). Moreover, the results of this analysis
are used to demonstrate how to interpret and compute the unstandard-
ized and standardized parameter estimates of the CFA solution. The
aims and procedures of CFA models that include single indicators are
described. The chapter concludes with a discussion and illustration of
the material that should be included when reporting the results of a
CFA study.

AN APPLIED EXAMPLE OF A CFA MEASUREMENT MODEL

The concepts introduced in Chapters 2 and 3 are now illustrated and
extended in the context of a full example of a CFA measurement model.
The hypothesized model and sample data (correlations, SDs) are presented
in Figure 4.1 (drawn loosely from the vast literature on the five-factor
model of personality; e.g., Wiggins, 1996). In this example, a researcher
has collected eight measures (subscales of a widely used personality mea-
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sure) from a sample of 250 psychotherapy outpatients: anxiety (N1), hos-
tility (N2), depression (N3), self-consciousness (N4), warmth (E1), gre-
gariousness (E2), assertiveness (E3), and positive emotions (E4). A two-
factor model is posited whereby the observed measures of anxiety, hostil-
ity, depression, and self-consciousness are conjectured to load on a latent
dimension of Neuroticism, and the observed measures of warmth, gregari-
ousness, assertiveness, and positive emotions are predicted to load onto a
distinct latent factor of Extraversion.

Although the Figure 4.1 model is basic, numerous predictions under-
lie this model specification. For instance, all measurement error is pre-
sumed to be unsystematic—that is, there are no correlated measurement
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Correlations/Standard Deviations (SD):

N1 N2 N3 N4 E1 E2 E3 E4

N1 1.000
N2 0.767 1.000
N3 0.731 0.709 1.000
N4 0.778 0.738 0.762 1.000
E1 -0.351 -0.302 -0.356 -0.318 1.000
E2 -0.316 -0.280 -0.300 -0.267 0.675 1.000
E3 -0.296 -0.289 -0.297 -0.296 0.634 0.651 1.000
E4 -0.282 -0.254 -0.292 -0.245 0.534 0.593 0.566 1.000

SD: 5.700 5.600 6.400 5.700 6.000 6.200 5.700 5.600

FIGURE 4.1. Path diagram and input data for two-factor CFA model of Neuroti-
cism and Extraversion. N1 = anxiety; N2 = hostility; N3 = depression; N4 = self-
consciousness; E1 = warmth; E2 = gregariousness; E3 = assertiveness; E4 = positive
emotions. All indicators measured on scales ranging from 0 to 32 (higher scores
reflect higher levels of the assessed dimension); N = 250.



errors for any pairs of indicators. This implies that for indicators loading
on the same latent factor, the observed covariance among these measures
can be explained entirely by the underlying construct; that is, there is no
reason for these observed relationships other than the latent factor. For
example, anxiety (N1) and hostility (N2) are correlated (r = .767; see Fig-
ure 4.1) because they are manifest symptoms influenced (caused) by the
same latent construct (Neuroticism); in other words, if Neuroticism was
somehow partialed out, the relationship between anxiety and hostility
would be reduced to zero (r = .00). In addition, this measurement model
asserts that Neuroticism and Extraversion are correlated (as depicted by
the bidirectional, curved arrow in Figure 4.1), although the nature of this
relationship is unanalyzed. In CFA, latent factors are almost always per-
mitted to be intercorrelated and there is no claim about the directionality
of such relationships (e.g., that Neuroticism has a direct effect on Extra-
version or vice versa). Indeed, as noted in Chapter 3, if the researcher
specifies directional relationships among latent factors, he or she has
moved out of the CFA measurement model framework and into the realm
of structural models where any sources of ill fit may stem from both the
measurement and structural portions of the solution (see Figure 3.2 in
Chapter 3).1 Allowing Neuroticism and Extraversion to be correlated also
implies that there may be some relationship between indicators that load
on separate factors. However, because indicators do not load on more than
one factor, it is predicted that any such relationships can be accounted for
by the correlation between the latent factors. For example, the observed
correlation between anxiety (N1) and warmth (E1) was –.351 (see Figure
4.1). As illustrated by a formula introduced in Chapter 3 (Eq. 3.8), this
model specification implies that the observed correlation of –.351 should
be reproduced in the completely standardized solution by multiplying the
factor loadings of N1 and E1 and the correlation between Neuroticism and
Extraversion (i.e., λx11φ21λ52). In other words, no cross-loadings (e.g., Neu-
roticism → E1) or error covariances are needed to reproduce these rela-
tionships; any covariation between N1–N4 and E1–E4 can be explained by
overlap in Neuroticism and Extraversion in tandem with the relationships
of the indicators with their latent factors.

Using a simple formula provided in Chapter 3 (Eq. 3.14), it can be
readily determined that the input matrix (S) contains 36 pieces of informa-
tion: 8 variances (p) and 28 covariances [p(p – 1) / 2]; that is, 8(9) / 2 = 36.
The measurement model presented in Figure 4.1 contains 17 freely esti-
mated parameters: 6 factor loadings (N1 and E1 will serve as marker indi-

Specification and Interpretation of CFA Models 105



cators and thus their factor loadings will be fixed), 8 error variances, 2 fac-
tor variances, and 1 factor covariance. The model is overidentified with 19
df (df = 36 – 17) and goodness-of-fit evaluation will apply.

MODEL SPECIFICATION

Substantive Justification

A few important steps precede the actual CFA analysis. As noted in preced-
ing chapters, CFA requires specification of a measurement model that is
well grounded by prior empirical evidence and theory. This is because CFA
entails more constraints than other approaches such as EFA (e.g., pre-
specification of indicator–factor relationships, fixing cross-loadings and
error covariances to zero), thus requiring the researcher to have a firm sub-
stantive and empirical basis to guide the model specification. The CFA
specification depicted in Figure 4.1 would likely be based on a strong con-
ceptual framework (e.g., the Big Five model of personality) and prior
research of a more exploratory nature (e.g., EFAs that indicate the number
of factors and pattern of indicator–factor loadings and that may have led to
the refinement of an assessment instrument such as removal of poorly
behaved indicators).

Defining the Metric of Latent Variables

Model specification also entails defining the metric of the latent factors. As
shown in Chapter 3, this can be accomplished by setting one observed
measure on each factor as a marker indicator or by fixing the variance of
the factors to a specific value (most commonly to 1.0). In applied research,
the marker indicator approach is more frequently used. When this method
is used, the researcher must decide which observed measures will serve as
marker indicators. In practice, marker indicators are often selected with
little consideration or are determined by software defaults (e.g., unless the
default is overridden by the user, Mplus automatically selects the first indi-
cator to be the reference indicator; see Figure 4.2). Although this selection
may be relatively trivial in some instances (e.g., CFA of a questionnaire
with tau equivalent items), there are many circumstances in which marker
indicators should be chosen carefully. For example, consider the scenario
where the researcher wishes to define a latent construct of Depression with
the following three indicators: (1) a single 0–8 clinical rating of depression
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severity (with little available evidence supporting its interrater reliability),
(2) a widely used and psychometrically well-established and normed ques-
tionnaire (range of possible scores = 0–64), and (3) a newly developed but
psychometrically promising self-report screening measure comprised of
dimensional ratings of the nine constituent symptoms of DSM-IV major
depression (range of possible scores = 0–36). In this instance, a strong case
would be made for using the second measure as the marker indicator
because it is the psychometrically strongest measure, it is the most widely
known in the applied literature, its metric is most meaningful (e.g., nor-
mative data exist). And, it yields the most units of discrimination (e.g., 0–
64 vs. 0–36 or 0–8). As a result of choosing the second indicator, more
variance is apt to be passed onto the latent factor of Depression, and the
unstandardized solution should be more interpretable. The latter aspect
would be particularly germane to MIMIC models (Chapter 7) and struc-
tural models that might entail regressive effects involving the latent
dimension of Depression; for example, a one unit increase in the predictor
is associated with an x-unit change in Depression—this unstandardized
path x is more easily interpreted if the metric of the marker indicator for
Depression is widely known and understood.

DATA SCREENING AND SELECTION
OF THE FITTING FUNCTION

The vast majority of CFA and SEM analyses in the applied research litera-
ture are conducted using maximum likelihood (ML) estimation. As dis-
cussed in Chapter 3, ML rests on several key assumptions, including suffi-
cient sample size and the use of indicators that approximate interval-level
scales and multivariate normality. In some instances, ML estimation is able
to withstand mild violations of these assumptions (see Chapter 9). Never-
theless, it is important to evaluate the sample size and sample data in
regard to their suitability for CFA and ML estimation because marked
departures from these assumptions would point to the need for alternative
analytic approaches or estimators (e.g., robust ML, weighted least
squares). Sample size considerations are fully discussed in Chapter 10.
With the exception of Mplus, the major latent variable software programs
(e.g., Amos, EQS, LISREL) contain routines for screening the sample data
for univariate and multivariate normality (i.e., skewness and kurtosis) and
outliers (i.e., aberrant cases). Broader statistical packages such as SAS and
SPSS also have these capabilities (cf. Tabachnick & Fidell, 2001). The spe-
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cifics of these data screening procedures are not detailed here, given that
this topic falls somewhat outside the scope of this book and that thorough
presentations of this issue are available in other SEM sources (e.g., Kline,
2005). Data screening is conducted on the raw sample data. If the data are
deemed suitable for ML analysis, the researcher has the option of using the
raw data, a correlation matrix, or a variance–covariance matrix as input
data for the CFA. If a correlation matrix is used, the indicator SDs must
also be provided in order for the program to convert the matrix into vari-
ances and covariances. If a fitting function other than ML is employed, a
simple correlation or covariance matrix cannot be used (e.g., WLS requires
that either the raw data or correlation and asymptotic covariance matrices
be inputted; see Chapter 9). At this stage of the process, the researcher
must also decide how missing data will be handled, a topic discussed in
Chapter 9.

RUNNING THE CFA ANALYSIS

After model specification and data screening issues have been settled, the
CFA model can be fit to the data. Table 4.1 provides syntax programs for
the Figure 4.1 model in LISREL, Mplus, EQS, Amos (Basic), and CALIS.
The reader is encouraged to focus initially on the longhand LISREL pro-
gramming, given its direct correspondence to the matrices, symbols, and
equations introduced in Chapter 3; for example, lambda-X (LX; Λx, λx),
theta-delta (TD; Θ δ, δ) and phi (PH; Φ, φ). Although the particular aspects
of each programming language are not detailed here, a few comparisons
are merited. In each analysis, anxiety and warmth were used as marker
indicators for Neuroticism and Extraversion, respectively. However, in
addition to many other syntax differences, the method of setting the
marker indicator varies across software programs: (1) LISREL uses the
Value (VA) command to fix the unstandardized loading to 1.0; (2) by
default, Mplus selects the first indicator listed after the BY keyword as the
marker variable (this default can be overridden by additional program-
ming); (3) in EQS, an asterisk (*) is used to specify that a parameter
should be freely estimated; if the asterisk is omitted, the EQS default is to
fix the unstandardized parameter to 1.0 (as in Mplus, this and any other
system default can be overridden by the user); and (4) in Amos and
CALIS, a “1” is placed before the factor name in the equation involving the
marker indicator.
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TABLE 4.1. Computer Syntax (LISREL, Mplus, EQS, Amos, CALIS)
for a Two-Factor CFA Model of Neuroticism and Extraversion

LISREL 8.72

TITLE TWO FACTOR MODEL OF NEUROTICISM AND EXTRAVERSION
DA NI=8 NO=250 MA=CM
LA
N1 N2 N3 N4 E1 E2 E3 E4
KM
1.000
0.767  1.000
0.731  0.709  1.000
0.778  0.738  0.762  1.000

-0.351 -0.302 -0.356 -0.318  1.000
-0.316 -0.280 -0.300 -0.267  0.675  1.000
-0.296 -0.289 -0.297 -0.296  0.634  0.651  1.000
-0.282 -0.254 -0.292 -0.245  0.534  0.593  0.566  1.000
SD
5.7 5.6 6.4 5.7 6.0 6.2 5.7 5.6
MO NX=8 NK=2 PH=SY,FR LX=FU,FR TD=SY,FR
LK
NEUROT EXTRAV
PA LX
0 0
1 0
1 0
1 0
0 0
0 1
0 1
0 1
VA 1.0 LX(1,1) LX(5,2)
PA TD
1
0 1
0 0 1
0 0 0 1
0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
PA PH
1
1 1
OU ME=ML RS MI SC ND=4

(cont.)
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TABLE 4.1. (cont.)

Mplus 3.11

TITLE:      TWO FACTOR MODEL OF NEUROTICISM AND EXTRAVERSION
DATA:       FILE IS NEUROT.DAT;

TYPE IS STDEVIATIONS CORRELATION;
NOBSERVATIONS ARE 250;

VARIABLE:   NAMES ARE N1-N4 E1-E4;
ANALYSIS:   ESTIMATOR=ML;
MODEL:      NEUROT BY N1-N4;

EXTRAV BY E1-E4;
OUTPUT:     SAMPSTAT MODINDICES(3.84) STANDARDIZED RESIDUAL;

EQS 5.7b

/TITLE
two-factor model of neuroticism and extraversion

/SPECIFICATIONS
CASES=250; VARIABLES=8; METHODS=ML; MATRIX=COR; ANALYSIS=COV;

/LABELS
v1=anxiety; v2=hostil; v3=depress; v4=selfcon; v5=warmth; v6=gregar;
v7=assert; v8=posemot; f1 = neurot; f2 = extrav;

/EQUATIONS
V1 =   F1+E1;
V2 =  *F1+E2;
V3 =  *F1+E3;
V4 =  *F1+E4;
V5 =   F2+E5;
V6 =  *F2+E6;
V7 =  *F2+E7;
V8 =  *F2+E8;

/VARIANCES
F1 TO F2 = *;
E1 TO E8 = *;

/COVARIANCES
F1 TO F2 = *;

/MATRIX
1.000
0.767  1.000
0.731  0.709  1.000
0.778  0.738  0.762  1.000

-0.351 -0.302 -0.356 -0.318  1.000
-0.316 -0.280 -0.300 -0.267  0.675  1.000
-0.296 -0.289 -0.297 -0.296  0.634  0.651  1.000
-0.282 -0.254 -0.292 -0.245  0.534  0.593  0.566  1.000
/STANDARD DEVIATIONS
5.7 5.6 6.4 5.7 6.0 6.2 5.7 5.6
/PRINT
fit=all;

(cont.)
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TABLE 4.1. (cont.)

/LMTEST
/WTEST
/END

Amos Basic 5.0

‘ Example of CFA in Amos 5.0
‘ Two-factor model
‘
Sub Main ()
Dim sem As New AmosEngine

sem.TextOutput
sem.Standardized
sem.Smc

sem.BeginGroup “Ninput2.txt”

sem.Structure “x1 =   (1) NEUROT + (1) th1"
sem.Structure “x2 =       NEUROT + (1) th2"
sem.Structure “x3 =       NEUROT + (1) th3"
sem.Structure “x4 =       NEUROT + (1) th4"
sem.Structure “x5 =   (1) EXTRAV + (1) th5"
sem.Structure “x6 =       EXTRAV + (1) th6"
sem.Structure “x7 =       EXTRAV + (1) th7"
sem.Structure “x8 =       EXTRAV + (1) th8"
sem.Structure “NEUROT <—> EXTRAV”

End Sub

SAS 8.2 PROC CALIS

Title “CFA of Two-Factor Model of Neuroticism and Extraversion”;
Data NEO (type=CORR);
input _TYPE_ $ _NAME_ $ V1-V8;
label V1 = ‘anxiety’

V2 = ‘hostil’
V3 = ‘depress’
V4 = ‘selfcons’
V5 = ‘warmth’
V6 = ‘gregar’
V7 = ‘assert’
V8 = ‘posemots’;

cards;

(cont.)



Mplus requires the fewest programming lines because the sample data
cannot be embedded in the syntax file (same with Amos) and because the
program includes a variety of defaults that correspond to frequently
employed CFA specifications. For instance, Mplus automatically sets the
first observed variable to be the marker indicator and freely estimates the
factor loadings for the remaining indicators in the list. By default, all error
variances are freely estimated and all error covariances and indicator cross-
loadings are fixed to 0; the factor variances and covariances are also freely
estimated by default. These and other convenience features in Mplus are
no doubt quite appealing to the experienced latent variable researcher.
However, novice users are advised to become fully aware of these system
defaults to ensure that their models are specified as intended. Note that
starting values have not been provided in any of the syntax files. Thus, by
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TABLE 4.1. (cont.)

mean  .    0      0      0      0      0      0      0      0
std  .  5.7    5.6    6.4    5.7    6.0    6.2    5.7    5.6
N  .  250    250    250    250    250    250    250    250

corr V1  1.000   .      .      .      .      .      .      .
corr V2  0.767  1.000   .      .      .      .      .      .
corr V3  0.731  0.709  1.000   .      .      .      .      .
corr V4  0.778  0.738  0.762  1.000   .      .      .      .
corr V5 -0.351 -0.302 -0.356 -0.318  1.000   .      .      .
corr V6 -0.316 -0.280 -0.300 -0.267  0.675  1.000   .      .
corr V7 -0.296 -0.289 -0.297 -0.296  0.634  0.651  1.000   .
corr V8 -0.282 -0.254 -0.292 -0.245  0.534  0.593  0.566  1.000
;
run;
proc calis data=NEO cov method=ml pall pcoves;
var = V1-V8;
lineqs
V1 = 1.0  f1 + e1,
V2 = lam2 f1 + e2,
V3 = lam3 f1 + e3,
V4 = lam4 f1 + e4,
V5 = 1.0  f2 + e5,
V6 = lam6 f2 + e6,
V7 = lam7 f2 + e7,
V8 = lam8 f2 + e8;

std
f1-f2 = ph1-ph2,
e1-e8 = td1-td8;

cov
f1-f2 = ph3;

run;



default, each program is instructed to automatically generate initial esti-
mates to begin the iterations to minimize FML.

MODEL EVALUATION

One of the most important aspects of model evaluation occurs prior to the
actual statistical analysis—that is, providing a compelling rationale that
the model is meaningful and useful on the basis of prior research evidence
and theory. After substantive justification of the model is established, the
acceptability of the fitted CFA solution should be evaluated on the basis of
three major aspects: (1) overall goodness of fit; (2) the presence or absence
of localized areas of strain in the solution (i.e., specific points of ill fit);
and (3) the interpretability, size, and statistical significance of the model’s
parameter estimates. A common error in applied CFA research is to evalu-
ate models exclusively on the basis of overall goodness of fit. However,
descriptive fit indices are best viewed as providing information on the
extent of a model’s lack of fit. In other words, although these indices may
provide conclusive evidence of a misspecified model, they cannot be used
in isolation of other information to support the conclusion of a good-
fitting model. Goodness-of-fit indices provide a global descriptive sum-
mary of the ability of the model to reproduce the input covariance matrix,
but the other two aspects of fit evaluation (localized strain, parameter esti-
mates) provide more specific information about the acceptability and util-
ity of the solution.

Overall Goodness of Fit

Overall goodness of fit in model evaluation is discussed in Chapter 3,
where several goodness-of-fit indices are recommended (e.g., SRMR,
RMSEA, CFI). As noted in Chapter 3, at least one index from each fit class
(absolute, parsimony, comparative) should be considered because each
provides different information about the fit of the CFA solution. After
ensuring that the model was specified as intended (e.g., verifying model df
and freely estimated, fixed, and constrained parameters), goodness-of-fit
indices are then examined to begin evaluating the acceptability of the
model. If these indices are consistent with good model fit, this provides
initial (tentative) support for the notion that the model was properly speci-
fied. The remaining aspects of model evaluation can be evaluated in this
context; for example, is goodness of fit also supported by the lack of local-
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ized areas of strain in the solution? However, if indices point to poor fit,
subsequent aspects of fit evaluation would be focused on diagnosing the
sources of model misspecification (e.g., inspection of modification indices
and standardized residuals; see the next section of this chapter). In addi-
tion, it would be erroneous to interpret the model’s parameter estimates
(e.g., size and significance of factor loadings and factor correlations) if the
solution fit the data poorly, because misspecified models produce biased
parameter estimates. Occasionally, fit indices will provide inconsistent
information about the fit of the model. In these instances, greater caution
is needed in determining the acceptability of the solution and in detecting
the potential sources of misspecification. For example, the SRMR and CFI
may suggest that fit is acceptable at an absolute level and in relation to a
null solution, but an RMSEA > .08 may indicate a lack of parsimony (i.e.,
look for the inclusion of freely estimated parameters that are unnecessary).

In the Figure 4.1 example, each of the overall goodness-of-fit indices
suggest that the two-factor model does fit these data well: χ2(19) = 13.23,
p = .83, SRMR = .019, RMSEA = 0.00 (90% CI = 0.00 – .018), CFit = .99,
TLI = 1.007, CFI = 1.00 (Mplus users will obtain a χ2 value of 13.285; cf.
FML(N), Eq. 3.17, Chapter 3). Although providing initial support for the
acceptability of the two-factor model, this tentative judgment must be ver-
ified by considering other aspects of the results.

Localized Areas of Strain

A limitation of goodness-of-fit statistics (e.g., SRMR, RMSEA, CFI) is that
they provide a global, descriptive indication of the ability of the model to
reproduce the observed relationships among the indicators in the input
matrix. However, in some instances, overall goodness-of-fit indices suggest
acceptable fit despite the fact that some relationships among indicators in
the sample data have not been reproduced adequately; or alternatively,
some model-implied relationships may markedly exceed the associations
seen in the data. This outcome is more apt to occur in complex models
(e.g., models that entail an input matrix consisting of a large set of indica-
tors) where the sample matrix is reproduced reasonably well on the whole,
and the presence of a few poorly reproduced relationships have less impact
on the global summary of model fit, as reflected by overall goodness-of-fit
statistics. Yet overall goodness-of-fit indices may indicate that a model
poorly reproduced the sample matrix. However, these indices do not pro-
vide information on the reasons why the model fit the data poorly (various
forms of model misspecification are considered in Chapter 5). Two statis-
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tics that are frequently used to identify focal areas of misfit in a CFA solu-
tion are residuals and modification indices.

Residuals

As discussed in Chapter 3 (e.g., see Figure 3.8), there are three matrices
associated with the typical CFA model: the sample variance–covariance
matrix (S), the model-implied (predicted) variance–covariance matrix (Σ),
and the residual variance–covariance matrix, which reflects the difference
between the sample and model-implied matrices (i.e., residual matrix = S –
Σ). Table 4.2 presents these matrices for the two-factor model depicted in
Figure 4.1. Although a correlation matrix and indicator SDs were used as
input (see Table 4.1), the latent variable software program uses this infor-
mation to create the sample variance–covariance matrix; for example, the
covariance of N1 and N2 = .767(5.7)(5.6) = 24.48. As discussed in Chap-
ter 3, the predicted (model-implied) variance–covariance matrix is gener-
ated on the basis of the parameter estimates obtained in the minimization
of FML (or some other fitting function such as weighted least squares). For
example, as will be shown later in this chapter, the completely standard-
ized factor loadings of N1 and N2 were estimated to be .8848 and .8485,
respectively. The model-implied correlation between these two indicators
is .751; that is, σ21 = λx11φ11λx21 = .8848(1)(.8485). Thus, the predicted
covariance of N1 and N2 is 23.97; i.e., .751(5.7)(5.6) (cf. Table 4.2). The
fitted residual for N1 and N2 is .518, the difference between their sample
and model-implied covariance; using the unrounded values from Table
4.2: 24.4826 – 23.965 = .5176.

Thus, while goodness-of-fit statistics such as the SRMR provide a
global summary of the difference between the sample and model-implied
matrices (see Chapter 3), the residual matrix provides specific information
about how well each variance and covariance was reproduced by the
model’s parameter estimates. Indeed, there exists one residual for each pair
of indicators. However, fitted residuals can be difficult to interpret because
they are affected by the raw metric and dispersion of the observed mea-
sures. It is particularly difficult to determine whether a fitted (unstandard-
ized) residual is large or small when the units of measurement of the indi-
cators are markedly disparate. This problem is addressed by standardized
residuals, which are computed by dividing the fitted residuals by their esti-
mated standard errors.2 Accordingly, standardized residuals are analogous
to standard scores in a sampling distribution and can thus be interpreted
along the lines of z scores. Stated another way, these values can be concep-
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tually considered as the number of standard deviations by which the fitted
residuals differ from the zero-value residuals that would be associated with
a perfectly fitting model.

The standardized residuals of the two-factor CFA model are presented
in Table 4.2. As seen in this table, standardized residuals can have either
positive or negative values. A positive standardized residual suggests that
the model’s parameters underestimate the zero-order relationship between
two indicators to some degree. For example, the standardized residual for
the N1–N2 relationship was 1.79; the sign of this residual is consistent
with the fact that the sample covariance of these indicators (24.48) was
larger than the model-implied covariance (23.96). Large, positive stan-
dardized residuals may indicate that additional parameters are needed in
the model to better account for the covariance between the indicators.
Conversely, a negative standardized residual suggests that the model’s
parameters overestimate the relationship between two indicators to some
extent. As seen in Table 4.2, the standardized residual for the N1–N3 rela-
tionship is –1.65 due to the fact that the sample covariance (26.67) was
smaller than the covariance predicted by the two-factor model (27.23).

Of course, CFA models specified in applied research will rarely pro-
duce standardized residuals that uniformly approximate zero. Thus, the
question arises as to how large standardized residuals should be to be con-
sidered salient. Because standardized residuals can be roughly interpreted
as z scores, the z score values that correspond to conventional statistical
significance levels are often employed as practical cutoffs. For instance,
researchers may scan for standardized residuals that are equal to or greater
than the absolute value of 1.96 because this value corresponds to a statisti-
cally significant z score at p < .05. In practice, this critical value is often
rounded up to 2.00. However, the size of standardized residuals is influ-
enced by sample size. In general, larger Ns are associated with larger stan-
dardized residuals because the size of the standard errors of the fitted
residuals is often inversely related to sample size. For this reason, some
methodologists recommend the use of larger cutoff values (e.g., 2.58,
which corresponds to the .01 alpha level; Byrne, 1998). In any case, the
researcher should be mindful of the potential impact of sample size when
interpreting the salience of the standardized residual. Other information
provided by the software output, such as expected parameter change, can
often assist in these considerations (see Modification Indices section).
While a cutoff of 2.00 or 2.58 provides a general guideline for this aspect
of model fit diagnostics, the researcher should especially look for standard-
ized residuals with outlying values. This process is fostered in the LISREL
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software by the output of stemleaf and Q plots, which can also be useful
for detecting non-normality or nonlinear associations in the indicators, in
addition to specification errors.

As seen in Table 4.2, the standardized residuals ranged from –1.65 to
1.87. Using the guidelines just presented, this outcome would be consis-
tent with the conclusion for the absence of localized areas of ill fit in the
solution. No relationships among the indicators are substantially under- or
overestimated by the model’s parameter estimates.

Modification Indices

Another aspect of model evaluation that focuses on specific relationships
in the solution is the modification index (Sörbom, 1989; referred to as the
univariate Lagrange multiplier in the EQS program). Modification indices
can be computed for each fixed parameter (e.g., parameters that are fixed
to zero such as indicator cross-loadings and error covariances) and con-
strained parameter in the model (e.g., parameters that are constrained to
equal magnitudes as in the test of tau equivalence; see Chapter 7). The
modification index reflects an approximation of how much the overall
model χ2 would decrease if the fixed or constrained parameter was freely
estimated. Indeed, if the parameter is freely estimated in a subsequent
analysis, the actual decrease in model χ2 may be somewhat smaller or
larger than the value of the modification index. In other words, the modifi-
cation index is roughly equivalent to the difference in the overall χ2

between two models, where in one model the parameter is fixed or con-
strained and in the other model the parameter is freely estimated. Thus,
modification indices are analogous to the χ2 difference (with a single df) of
nested models (nested models were introduced in Chapter 3 and are dis-
cussed more fully in subsequent chapters, e.g., Chapter 5 and Chapter 7).

To illustrate this concept, modification indices from the Figure 4.1
solution are presented in Table 4.3. Consider the modification index for
the E1 indicator (1.32) listed under the heading “Modification Indices for
Lambda-X.” This value indicates that if the E1 indicator was freely esti-
mated to cross-load on the Neuroticism latent factor, the overall model χ2

is estimated to drop by 1.32 units (e.g., from 13.23 to 11.91). If this cross-
loading was in fact specified in a subsequent analysis, the model df would
decrease from 19 to 18 because an additional parameter has been freely
estimated (Neuroticism → E1). Therefore, this modification index esti-
mates a χ2 difference (with 1 df) of 1.32 if this cross-loading is freely esti-
mated.
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In general, a good-fitting model should also produce modification
indices that are small in magnitude. Because the modification index can be
conceptualized as a χ2 statistic with 1 df, indices of 3.84 or greater (which
reflects the critical value of χ2 at p < .05, 1 df) suggest that the overall fit of
the model could be significantly improved (p < .05) if the fixed or con-
strained parameter was freely estimated (although in practice, this critical
value is often rounded up to 4.00; cf. Jaccard & Wan, 1996). Thus, for
example, the modification index corresponding to the E1 cross-loading
(1.32) would argue against freely estimating this parameter because this
respecification would not result in a significant improvement in model fit.

Like overall model χ2 and standardized residuals, modification indi-
ces are sensitive to sample size. For instance, when N is very large, a large
modification index may suggest the need to add a given parameter despite
the fact that the magnitude of the parameter in question, if freely esti-
mated, is rather trivial (e.g., a large modification index associated with a
completely standardized cross-loading of .10). To address this problem,
latent variable software programs provide expected parameter change
(EPC) values for each modification index. The EPC values provided by
these programs may be unstandardized, standardized, or completely stan-
dardized. Some programs, such as Mplus and LISREL, provide all three
forms of EPC values. As the name implies, EPC values provide an estimate
of how much the parameter is expected to change in a positive or negative
direction if it were freely estimated in a subsequent analysis. Unstandard-
ized EPC values are proportional to the scale of the observed measures in
question. Thus, fit diagnostics typically focus on completely standardized
EPC values. For example, as shown in Table 4.3, the completely standard-
ized cross-loading of E1 onto Neuroticism is predicted to be –.06, which
further supports the contention that warmth (E1) has no meaningful
direct relationship with the dimension of Neuroticism. Especially when
sample size is large, the size and direction of EPC values should be consid-
ered in tandem with modification indices to assist in the determination of
whether the respecification is conceptually and statistically viable (cf.
Kaplan, 1989, 1990).

Indeed, a key principle of model respecification is that modification
indices and standardized residuals should prompt the researcher to relax a
fixed or constrained parameter only when there exists a compelling sub-
stantive basis for doing so (i.e., freeing the parameter is supported by
empirical, conceptual, or practical considerations) and when the expected
value (EPC) of the parameter can be clearly interpreted. Especially when
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sample size is large, modification indices and standardized residuals will
often indicate the presence of parameters that, if freed, would improve the
fit of the model. However, such parameters should not be freed with the
sole intent of improving model fit. Rather, all model respecifications must
be justified on the basis of prior research or theory.

Several studies have highlighted the problems that occur when mod-
els are respecified solely on the basis of modification indices or standard-
ized residuals. For example, MacCallum (1986) examined how often and
under what conditions specification searches (i.e., post hoc revisions to a
fitted model as determined by modification indices) are likely to lead to
the discovery of the correct population model. This question was exam-
ined by generating simulated data for which the “true” model was known,
fitting various misspecified models to the data, and then determining
whether the specification search (e.g., freeing parameters with the highest
modification indices one at a time in sequential order) led to finding the
correct model. In many instances, the model revisions implied by the spec-
ification searches were incorrect; for example, they led to model specifica-
tions that did not correspond closely to the true model. This was particu-
larly apparent when the initial model was markedly misspecified and when
sample size was modest (e.g., N = 100). In a follow-up to this study, Silvia
and MacCallum (1988) found that restricting modifications to those that
could be justified on the basis of prior theory greatly improved the success
of the specification search.

For these reasons, Jöreskog (1993) has recommended that model
modification begin by freely estimating the fixed or constrained parameter
with the largest modification index (and EPC) if this parameter can be
interpreted substantively. If there does not exist a substantive basis for relax-
ing the parameter with the largest modification index, consider the param-
eter associated with the second largest modification index, and so on.
However, it is important to note that a poorly reproduced relationship may
be reflected by high modification indices in more than one matrix (e.g.,
suggestive of a cross-loading in lambda-X; suggestive of an error covari-
ance in theta-delta). Thus, several high modification indices may be reme-
died by freeing a single parameter. Because the model-implied covariance
matrix (Σ) is dependent on all model parameters, there are countless ways
a single model revision can impact Σ. Therefore, revisions of a model
should always focus exclusively on parameters justified by prior evidence
or theory. This point is further underscored by the fact that some modifica-
tion indices output by latent variable software programs appear nonsensi-
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cal; for instance, a modification index suggesting a direct effect of a distur-
bance on a latent variable, or a method effect involving the measurement
error of a single indicator.

Other potential adverse consequences of atheoretical specification
searches are overfitting (i.e., adding unnecessary parameters to the model)
and capitalization on chance associations in the sample data (i.e., account-
ing for weak effects in the data that stem from sampling error and are not
apt to be replicated in independent data sets). MacCallum, Roznowski,
and Necowitz (1992) have argued against modifying a good-fitting model
to achieve even better fit because this practice is likely to be “fitting small
idiosyncratic characteristics of the sample” (p. 501). Thus, sampling error,
in tandem with the sensitivity of modification indices and standardized
residuals to sample size, heightens the risk for model respecifications of a
trivial nature. Researchers are perhaps most prone to model overfitting in
instances where overall goodness-of-fit indices are on the border of con-
ventional guidelines for acceptable fit. For example, as the result of exam-
ining modification indices, the researcher might determine that freeing
some correlated errors in a CFA solution would improve a “borderline”
value of a given fit index. However, in addition to lacking a substantive
basis, this practice may introduce other problems such as biasing other
parameters in the model (e.g., the magnitude of the factor loadings) and
their standard errors.

Even when revisions to the initial solution can be defended with com-
pelling empirically or theoretically based arguments, it is important to
note that by pursuing respecifications of the initial model, one has moved
out of a confirmatory analytic framework. Indeed, as the name implies, a
“specification search” (MacCallum, 1986) entails an exploratory endeavor
to determine the nature of the misfit of the initial, hypothesized model.
Accordingly, respecified models should be interpreted with caution. Espe-
cially in instances where substantial changes have been made to the initial
model, modified solutions should be replicated in independent samples.
Or if size of the original sample is sufficiently large, the sample could be
split into derivation and holdback samples to cross-validate the revised
model.

Unnecessary Parameters

Thus far, the discussion of model modification has focused primarily on
the issue of adding new freely estimated parameters to the initial model.
Although this is the most common form of model respecification, models
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can be revised by eliminating statistically nonsignificant parameters. It was
noted earlier that the presence of unnecessary parameters may be reflected
by large, negative standardized residuals that indicate that the model is
overestimating the observed relationship between a pair of indicators. A
similar statistic found in the EQS software program is the univariate Wald
test. Converse to the modification index (i.e., univariate Lagrange multi-
plier), the univariate Wald test provides an estimate of how much the
overall model χ2 would increase if a freely estimated parameter were fixed
to zero.3 A nonsignificant Wald test value (e.g., < 3.84 in the case of a sin-
gle parameter) would indicate that removing the freely estimated parame-
ter (e.g., fixing it to zero) would not result in a significant decrease in
model fit. In programs such as LISREL, Mplus, and Amos, the necessity of
existing parameters can be evaluated by examining their statistical signifi-
cance. As discussed in the next section, the statistical significance of a
freely estimated parameter is indicated by a test statistic (which can be
interpreted as a z statistic) that is calculated by dividing the unstandard-
ized parameter estimate by its standard error. At the .05 alpha level (two-
tailed), parameters associated with z values of ±1.96 or greater are statisti-
cally significant. Thus, parameters with z values less than 1.96 are statisti-
cally nonsignificant and might be considered unnecessary to the solution.
The z and χ2 distributions are closely related—for example, the critical
value of χ2 with 1 df, α = .05 is 3.842, which equals the squared critical
value (α = .05) of z (i.e., 1.962 = 3.842). Accordingly, although the
univariate Wald test is not provided by programs other than EQS, it can be
calculated from the output of all software packages by squaring the
z value associated with the unstandardized parameter estimate; that is, the
squared z value provides an estimate of how much model χ2 would
increase if the freed parameter was removed. However, CFA and SEM users
should be aware that the results of Wald tests and parameter significance
tests are sensitive to how the metric of the latent variable is identified (e.g.,
selection of marker indicator, fixing variance of the latent variable to 1.0).
This issue is discussed in Appendix 4.1.

In structural models, Wald tests suggest that some directional paths
among latent variables may not be necessary. In CFA measurement mod-
els, nonsignificant parameters or Wald tests may point to a variety of
model modifications such as the removal of indicators (e.g., nonsignificant
factor loadings) or specific parameters that have been freely estimated in
the initial solution (e.g., correlated errors, cross-loadings, factor correla-
tions). The various forms of CFA model misspecification are discussed in
Chapter 5.
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Interpretability, Size, and Statistical Significance
of the Parameter Estimates

Returning to the Figure 4.1 example, recall that each of the overall
goodness-of-fit indices suggested that the two-factor model fit the data
well. Goodness of model fit was further verified by the absence of large
modification indices and standardized residuals (see Tables 4.2 and 4.3),
thereby indicating no focal areas of ill fit in the solution. Thus, model eval-
uation can proceed to inspecting the direction, magnitude, and signifi-
cance of the parameter estimates—namely, the factor loadings, factor vari-
ances and covariance, and indicator errors. These results are presented in
Table 4.4.

An initial step in this process is to determine whether the parameter
estimates make statistical and substantive sense. From a statistical perspec-
tive, the parameter estimates should not take on out-of-range values such as
completely standardized factor correlations that exceed 1.0, negative factor
variances, or negative indicator error variances.4 In Chapter 3 it was noted
that such out-of-range values, which are often referred to as “Heywood
cases” (or “offending estimates”), may be indicative of model specification
error or problems with the sample or model-implied matrices (e.g., a
nonpositive definite matrix, small N). Thus, the model and sample data
must be viewed with caution to rule out the existence of more serious
causes of these outcomes. A classic reference for dealing with improper
solutions and nonpositive definite matrices is Wothke (1993). This issue is
also discussed at length in Chapter 5. As seen in Table 4.4, all parameter
estimates from the Figure 4.1 solution are statistically viable (e.g., no nega-
tive variances). Readers will note that the estimate of the factor covariance/
correlation is negative (e.g., completely standardized estimate = –.435).
However, the sign of this relationship is in accord with theory and the scal-
ing of the latent factors; that is, Neuroticism is inversely related to Extra-
version. Moreover, the unstandardized factor loadings of the N1 and E1
are 1.0 because these observed measures were used as marker indicators;
their loadings were fixed to 1.0 in order to pass the metric of N1 and E1
onto the latent factors of Neuroticism and Extraversion, respectively. Con-
sequently, the standard errors of these estimates are 0.0, and thus no sig-
nificance test (i.e., z value) is available for the marker indicators (in Table
4.4, note that the S.E. and Est./S.E. estimates for N1 and E1 are 0.0).

From a substantive perspective, the direction of the parameter estimates
provided in Table 4.4 are in accord with prediction. The N1, N2, N3, and
N4 indicators are positively related to the latent construct of Neuroticism,

126 CONFIRMATORY FACTOR ANALYSIS FOR APPLIED RESEARCH



127

TABLE 4.4. Parameter Estimates from the Two-Factor CFA Model of Neuroticism
and Extraversion

MODEL RESULTS
Estimates  S.E. Est./S.E.   Std StdYX

NEUROT BY
N1 1.0000 0.0000 0.0000 5.0435 0.8848
N2 0.9421 0.0525 17.9452 4.7517 0.8485
N3 1.0706 0.0603 17.7754 5.3993 0.8436
N4 0.9968 0.0517 19.2737 5.0272 0.8820

EXTRAV BY
E1 1.0000 0.0000 0.0000 4.8111 0.8018
E2 1.0745 0.0790 13.6089 5.1693 0.8338
E3 0.9353 0.0725 12.9011 4.4999 0.7895
E4 0.8137 0.0725 11.2246 3.9146 0.6990

EXTRAV WITH
NEUROT -10.5542 1.9313 -5.4647 -0.4350 -0.4350

Variances
NEUROT 25.4367 2.9175 8.7186 1.0000 1.0000
EXTRAV 23.1466 3.2068 7.2179 1.0000 1.0000

Residual Variances
N1 7.0533 0.9123 7.7309 7.0533 0.2171
N2 8.7816 1.0050 8.7376 8.7816 0.2800
N3 11.8074 1.3361 8.8374 11.8074 0.2883
N4 7.2168 0.9217 7.8299 7.2168 0.2221
E1 12.8534 1.5900 8.0837 12.8534 0.3570
E2 11.7182 1.6118 7.2702 11.7182 0.3048
E3 12.2411 1.4670 8.3441 12.2411 0.3768
E4 16.0359 1.6760 9.5678 16.0359 0.5113

R-SQUARE

Observed
Variable R-Square
N1 0.7829
N2 0.7200
N3 0.7117
N4 0.7779
E1 0.6430
E2 0.6952
E3 0.6232
E4 0.4887

Note. Estimates, unstandardized parameter estimate; S.E., standard error; Est./S.E., test sta-
tistic (z value); Std, standardized parameter estimate; StdYX, completely standardized
parameter estimate; Mplus 3.11 output.



and the E1, E2, E3, and E4 indicators are positively related to the latent
construct of Extraversion. For example, the unstandardized factor loading
for N2 (hostility) is 0.942, which can be interpreted as indicating that a
one-unit increase in the latent dimension of Neuroticism is associated with
a .942-unit increase in the observed measure of hostility (see Table 4.4, in
the “Estimates” column).

The results provided in Table 4.4 also indicate that every freely esti-
mated parameter is statistically significant. As noted earlier, statistical sig-
nificance is determined by dividing the unstandardized parameter estimate
by its standard error (see “S.E.” column in Table 4.4; for a discussion of
how standard errors are calculated in ML estimation, see Kaplan, 2000).
Because this ratio can be interpreted as a z score, ±1.96 would be the criti-
cal value at an alpha level of .05 (two-tailed). For example, the z value for
the E2 factor loading is 13.6 (i.e., 1.074 / .079 = 13.6; see “Est./S.E.” col-
umn of Table 4.4), which can thus be interpreted as indicating that the
gregariousness indicator loads significantly on the latent factor of Extra-
version. In addition to the factor loadings, the factor covariance (Extra-
version with Neuroticism), factor variances, and indicator error variances
(listed under the “Residual Variances” heading in Table 4.4) all differ sig-
nificantly from zero (but see Appendix 4.1).5

The z tests of the statistical significance of the unstandardized param-
eter estimates cannot be relied upon to determine the statistical signifi-
cance of corresponding (completely) standardized estimates (see Bollen,
1989, for discussion). Although not identical, the z test results for stan-
dardized and unstandardized parameter estimates are usually close; that is,
especially in the case of strong effects, these tests will more times than not
yield the same conclusion regarding statistical significance. If significance
tests of standardized coefficients are desired, standard errors of these esti-
mates must be estimated (from which z test statistics can be computed).
Most of the major latent variable software programs do not readily provide
the standard errors of standardized coefficients, although they can be com-
puted using the delta method or by the bootstrapping capabilities of these
programs (see Chapter 9; e.g., in version 3.0 and later of Mplus, these
standard errors can be computed using the MODEL INDIRECT com-
mand).

In addition, it is important to evaluate the standard errors of the param-
eter estimates to determine if their magnitude is appropriate, or problem-
atically too large or too small. Standard errors represent estimates of how
much sampling error is operating in the model’s parameter estimates (i.e.,
how closely the model’s parameter estimates approximate the true popula-
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tion parameters). Stated another way, standard errors provide an estimate
of how stable the model’s parameter estimates would be if we were able to
fit the model repeatedly by taking multiple samples from the population of
interest. The 95% confidence interval of an unstandardized parameter esti-
mate can be calculated by adding and subtracting the estimate by the prod-
uct of 1.96 times the standard error. For example, the 95% confidence
interval of the E2 factor loading is .919 to 1.229; that is, 1.074 ±1.96(.079)
(see Table 4.4). This is interpreted as indicating we can be 95% certain that
the true population value of this parameter is between .919 and 1.229.

Although small standard errors might imply considerable precision in
the estimate of the parameter, the significance test of the parameter (i.e.,
z statistic) cannot be calculated if the standard error approximates zero.
Conversely, excessively large standard errors indicate problematically im-
precise parameter estimates (i.e., very wide confidence intervals) and
hence are associated with low power to detect the parameter as statistically
significant from zero. Problematic standard errors may stem from a variety
of difficulties, such as a misspecified model, small sample size, or use of
non-normal data, an improper estimator, or matrix type, or some combina-
tion. Unfortunately, there are no specific guidelines available to assist the
researcher in determining if the magnitude of standard errors is problem-
atic in a given data set. This is because the size of standard errors is deter-
mined in part by the metric of the indicators and latent variables
(cf. Appendix 4.1) and the size of the actual parameter estimate, which
vary from data set to data set. However, keeping the metric of the variables
in mind, the researcher should be concerned about standard errors that
have standout values or approach zero, as well as parameter estimates that
appear reasonably large but are not statistically significant.

Assuming the problems related to insufficient sample size and inap-
propriate standard errors can be ruled out, the researcher must consider
parameter estimates in the model that fail to reach statistical significance
(further reflected by Wald tests; see the preceding section). For example, a
nonsignificant factor loading in a congeneric CFA solution indicates that
an observed measure is not related to its purported latent dimension, and
would typically suggest that the indicator should be eliminated from the
measurement model. In a noncongeneric solution, a nonsignificant cross-
loading would suggest that this parameter is not important to the model
and can be dropped. Likewise, a nonsignificant error covariance suggests
that the parameter does not assist in accounting for the relationship
between two indicators (beyond the covariance explained by the latent
factors). As in model respecifications where parameters are added to the
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initial solution, nonsignificant parameters should be deleted from the
model one at a time as guided by a conceptual or empirical rationale. A
factor variance that does not significantly differ from zero typically signals
significant problems in the solution, such as the use of a marker variable
that does not have a relationship with the latent factor (another potential
consequence of this is empirical underidentification; see Chapter 3), sub-
stantial non-normality in the input matrix, or use of a sample that is too
small. Whether or not nonsignificant factor covariances (correlations)
should be of concern depends on the theoretical context of the CFA solu-
tion (e.g., is the lack of overlap among latent factors in accord with predic-
tion?). Error variances are inversely related to the size of their respective
factor loadings; that is, the more indicator variance explained by a latent
factor, the smaller the error variance will be. Thus, assuming no other
problems with the solution (e.g., a leptokurtotic indicator, small N),
nonsignificant error variances should not prompt remedial action and in
fact may signify that an indicator is very strongly related to its purported
latent factor. In applied research, however, indicator error variances almost
always differ significantly from zero because an appreciable portion of an
indicator’s variance is usually not explained by the factor, in tandem with
the use of large sample sizes (see below).

The acceptability of parameter estimates should not be determined
solely on the basis of their direction and statistical significance. Because
CFA is typically conducted in large samples, the analysis is often highly
powered to detect rather trivial effects as statistically significant. Thus, it is
important not only to demonstrate that the specified model reproduces the
relationships in the input data well, but that the resulting parameter esti-
mates are of a magnitude that is substantively meaningful. For an illustration
of how goodness of model fit may be unrelated to the reasonability of the
CFA parameter estimates, see Appendix 4.2. For example, the size of the
factor loadings should be considered closely to determine if all indicators
can be regarded as reasonable measures of their latent constructs. The
issue of what constitutes a sufficiently large parameter estimate varies
across empirical contexts. For example, in applied factor analytic research
of questionnaires, completely standardized factor loadings of .30 (or .40)
and above are commonly used to operationally define a “salient” factor
loading or cross-loading. However, such guidelines may be viewed as too
liberal in many forms of CFA research, such as construct validation studies
where scale composite scores, rather than individual items, are used as
indicators.

In CFA models where there are no cross-loading indicators, the com-
pletely standardized factor loading can be interpreted as the correlation
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between the indicator and the latent factor.6 Accordingly, squaring the
completely standardized factor loading provides the proportion of variance
of the indicator that is explained by the latent factor; that is, a communality
(Eq. 3.5, Chapter 3). For example, the completely standardized loading of
N4 (self-consciousness) is estimated to be .882, which can be interpreted
as indicating that a standardized score increase in Neuroticism is associ-
ated with a .882 standardized score increase in self-consciousness. The
squared factor loading is .778, indicating that 77.8% of the variance in the
observed measure of self-consciousness is accounted for by the latent fac-
tor of Neuroticism. These values are provided in Mplus, as well as in EQS,
printouts under the “R-Square” heading (e.g., see Table 4.4); in LISREL
and Amos output, these values are provided under the heading “Squared
Multiple Correlations.” Especially in the context of psychometric research
(e.g., evaluating the latent structure of a test instrument), these squared
factor loadings can be considered as estimates of the indicator’s reliability;
that is, the proportion of the indicator’s variance that is estimated to be
“true score” variance (see Chapter 8, for further discussion). Accordingly,
the proportion of explained variance in the indicators can be quite useful
in formulating conclusions about whether the measures are meaningfully
related to their purported latent dimensions.

As noted earlier, the interpretability of the size and statistical signifi-
cance of factor intercorrelations depends on the specific research context.
For instance, in the Figure 4.1 solution, the correlation between the latent
factors of Neuroticism and Extraversion was estimated to be –.435. The
corresponding factor covariance was statistically significant, p < .05, as
reflected by an absolute value of z greater than 1.96; that is, z = –5.46 (see
Table 4.4). The substantive sensibility of this relationship would be evalu-
ated by considering prior evidence and theory that bear on this analysis. In
general, the size of the factor correlations in multifactorial CFA solutions
should also be interpreted with regard to the discriminant validity of the
latent constructs. Small, or statistically nonsignificant, factor covariances
are usually not considered problematic and are typically retained in the
solution (i.e., they provide evidence that the discriminant validity of the
factors is good). However, if factor correlations approach 1.0, there is
strong evidence to question the notion that the latent factors represent dis-
tinct constructs. In applied research, a factor correlation that exceeds .80
or .85 is often used as the criterion to define poor discriminant validity.
When two factors are highly overlapping, a common research strategy is to
respecify the model by collapsing the dimensions into a single factor and
determine whether this modification results in a significant degradation in
model fit (see Chapter 5). If the respecified model provides an acceptable
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fit to the data, it is usually favored because of its superior parsimony,
although substantive considerations must be brought to bear (i.e., con-
sider the implications to the literature that guided the formation of the ini-
tial, less parsimonious model).

INTERPRETATION AND CALCULATION OF CFA MODEL
PARAMETER ESTIMATES

This section reviews and expands on how the various parameter estimates
in the two-factor CFA model of Neuroticism and Extraversion are calcu-
lated and interpreted. Figure 4.2 presents this model with the unstandard-
ized and completely standardized parameter estimates. Recall that in an
unstandardized solution, all parameter estimates (factor loadings, factor
variances and covariances, indicator error variances and covariances) are
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FIGURE 4.2. Unstandardized and completely standardized parameter estimates
from the two-factor CFA model of Neuroticism and Extraversion. N1 = anxiety;
N2 = hostility; N3 = depression; N4 = self-consciousness; E1 = warmth; E2 = gre-
gariousness; E3 = assertiveness; E4 = positive emotions. Completely standardized
parameter estimates are presented in parentheses. All freely estimated unstandard-
ized parameter estimates are statistically significant (p < .001).



based on the original metrics of the indicators and latent factors when the
marker indicator method is used to define the scales of the latent variables
(i.e., the metric of the marker indicator is passed on to the latent factor).
For instance, in unstandardized solutions, factor loadings can be inter-
preted as unstandardized regression coefficients; for example, a one unit
increase in Neuroticism is associated with a 1.07 increase in depression
(N3; see Figure 4.2).

In completely standardized solutions, the metrics of both the indicators
and latent factors are standardized (i.e., M = 0.0, SD = 1.0). Thus, factor
loadings in a completely standardized solution can be interpreted as stan-
dardized regression coefficients; for example, a one standardized score
increase in Neuroticism is associated with a .844 standardized score
increase in depression (N3; see Figure 4.2). However, when the measure-
ment model contains no double-loading indicators, a completely standard-
ized factor loading can also be interpreted as the correlation of the indica-
tor with the latent factor because the latent factor is the sole predictor of
the indicator. Accordingly, squaring a completely standardized factor load-
ing provides the proportion of variance in the indicator that is explained
by the latent factor; for example, Neuroticism accounts for 71.2% of the
variance in the indicator (N3) of depression (.84362 = .712). Thus, it fol-
lows that the basic equation of “1.0 minus the squared factor loading” (Eq.
3.6, Chapter 3) provides the proportion of variance in an indicator that is
not explained by the latent factor; for example, 1 – .84362 = .288, indicat-
ing that 28.8% of the observed variance in the depression indicator (N3) is
estimated to be unique or error variance (see Figure 4.2).

By means of simple calculations, it is straightforward to transform a
completely standardized CFA solution into an unstandardized solution,
and vice versa. The following calculations transform a completely stan-
dardized solution into a unstandardized solution. When the marker indi-
cator approach to model identification is employed, the variance of the
latent factor is calculated by squaring the completely standardized factor
loading of the marker indicator and multiplying this result by the observed
variance of the marker indicator. To illustrate, the variance of the latent
variable of Neuroticism was estimated to be 25.44 (see Figure 4.2). In
Chapter 3 (Eq. 3.10), it was shown that this unstandardized parameter
estimate can be calculated by squaring the completely standardized factor
loading of N1 (anxiety; λ11 = .8848) and multiplying this result by the
observed variance of this indicator (σ1

2 = 32.49; see Table 4.2):

φ11 = .88482(32.49) = 25.44 (4.1)
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The factor variance of Extraversion (φ22 = 23.15; Figure 4.2) can be com-
puted in the same fashion by multiplying the squared completely stan-
dardized factor loading of E1 (warmth; λ52 = .8018) by the observed vari-
ance of E1 (σ 2

5 = 36.00; see Table 4.2):

φ22 = .80182(36.00) = 23.15 (4.2)

The standard deviations (SDs) of the latent factors are calculated by sim-
ply taking the square root of the factor variances; that is, Neuroticism
SD = SQRT(25.44) = 5.04, Extraversion SD = SQRT(23.15) = 4.81 (some
readers may notice that these values equal the standardized factor load-
ings for the marker indicators N1 and E1; see “Std” column in Table
4.4).

The unstandardized error variances of the indicators can be calculated
by multiplying the completely standardized residuals (δ) by the observed
variance of the indicators. For example, the error variance of N2 (hostility)
was estimated by the two-factor model to be 8.78 (see Figure 4.2). This
estimate can be reproduced by multiplying N2’s completely standardized
residual (δ2 = .28; Figure 4.2) by its observed variance (σ2

2 = 31.36; Table
4.2):

δ2 = .28(31.36) = 8.78 (4.3)

Alternatively, error variances can be computed using the squared com-
pletely standardized factor loadings and the observed variances of indica-
tors:

δ2 = σ 2
2 – σ 2

2(λ21
2) (4.4)

= 31.36 – (.84852)(31.36)
= 8.78

Factor covariances can be hand calculated using the SDs and correla-
tions of the factors, using the same equation used for calculating co-
variances among the input indicators:

φ21 = r21(SD1)(SD2) (4.5)

In the two-factor model, the correlation between Neuroticism and Extra-
version was estimated to be –.435 (see Figure 4.2) and the SDs of these
factors were estimated to be 5.04 and 4.81, respectively. Thus, the factor
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covariance of –10.55 (see Figure 4.2) can be calculated by multiplying
these three estimates:

φ21 = –.435(5.04)(4.81) = –10.55 (4.6)

Although not relevant to the current two-factor solution, indicator error
covariances can be calculated in the same fashion (i.e., multiply the error
correlation by the indicator error SDs).

As noted earlier, factor loadings are regression coefficients. Therefore,
the equations used for calculating unstandardized and standardized regres-
sion coefficients can be applied to the transformation of a completely stan-
dardized factor loading into an unstandardized loading, and vice versa. In
a regression equation involving a single predictor (x) and criterion variable
(y), the unstandardized regression coefficient (b) can be computed by the
following formula:

b = (ryxSDy) / (SDx) (4.7)

This equation readily generalizes to the CFA analysis of congeneric indica-
tor sets whereby b = unstandardized factor loading, ryx = completely stan-
dardized factor loading, SDy = SD of the indicator, and SDx = SD of the
latent factor. For example, the completely standardized factor loading of
the E2 indicator (gregariousness; λ62 = .8338) can be converted into an
unstandardized loading (λ62 = 1.075; see Figure 4.2) as follows:

λ62 = .8338(6.2) / 4.81 = 1.075 (4.8)

(The observed SD of E2 is 6.2, and the SD of the latent factor of
Extraversion is 4.81.)

It is also straightforward to transform an unstandardized solution into
a completely standardized solution. As a function of standardization, the
factor variance in a completely standardized solution must be 1.0 (see
Table 4.4). A completely standardized indicator error can be readily calcu-
lated by dividing the model-estimated error variance (δ) by the observed
variance (σ2) of the indicator. For example, the completely standardized
error estimate of .28 for N2 (hostility) is reproduced by dividing its
unstandardized error variance (δ2 = 8.78; Figure 4.2) by its observed vari-
ance (σ2

2 = 31.36; Table 4.2):

δ2 = 8.78 / 31.36 = .280 (4.9)
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Again, this value reflects the proportion of the variance in N2 that is not
explained by the latent factor of Neuroticism.

A factor intercorrelation can be calculated by dividing a factor
covariance by the product of the SDs of the factors. Indeed, the factor
correlation between Neuroticism and Extraversion was estimated to be
–.435. This coefficient can be computed by dividing the factor covariance
(φ21 = –10.55; Figure 4.2) by the product of the SDs of Neuroticism and
Extraversion (5.04 and 4.81, respectively):

φ21 = –10.55 / [(5.04)(4.81)] = –.435 (4.10)

(This formula generalizes to the calculation of the correlations between
indicator errors.) Squaring a factor correlation provides the proportion of
overlapping variance between two factors; for example, Neuroticism and
Extraversion share 18.9% of their variance (–.4352 = .189).

As was the case for unstandardized factor loadings, an equation from
multiple regression can be readily applied to the computation of com-
pletely standardized loadings from unstandardized estimates. In multiple
regression, an standardized regression coefficient (b*) can be computed by
the following formula:

b* = (bSDx) / (SDy) (4.11)

where b is the unstandardized regression coefficient, SDx is the SD of the
predictor, and SDy is the SD of the criterion variable. The parameters of a
CFA solution can be substituted in this equation: b* = completely stan-
dardized factor loading, b = unstandardized factor loading, SDx = the SD of
the latent factor, and SDy = the SD of the indicator. For example, the
unstandardized factor loading of the E2 indicator (gregariousness;
λ62 = 1.075) can be converted into a completely standardized factor load-
ing (λ62 = .8338; see Figure 4.2) as follows:

λ62 = 1.075 (4.81) / 6.2 = .8338 (4.12)

(The SD of the latent factor of Extraversion is 4.81, the observed SD of E2
is 6.2.)

In addition to unstandardized and completely standardized solutions,
some popular latent variable software packages (e.g., LISREL, Mplus) pro-
vide standardized solutions. Table 4.4 provides the standardized parameter
estimates under the column heading “Std” (in LISREL, these estimates are
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provided under the heading “Standardized Solution”). However, the term
“standardized solution” is frequently used in applied and even basic
quantitative research in reference to a completely standardized solution.
Although standardized solutions are rarely reported in applied SEM and
CFA research, the reader must take care to determine whether a com-
pletely standardized solution or a standardized solution is being presented
by the study’s authors as the “standardized solution.” Strictly speaking, in
a standardized solution, only the latent variables are standardized (i.e., the
indicator is expressed by its original metric). For example, the standard-
ized factor loading of N2 (hostility) is estimated to be 4.75. This estimate
is interpreted as indicating that for every one standardized score unit
increase in Neuroticism, N2 is predicted to increase by 4.75 unstandard-
ized units. This parameter is calculated by multiplying the unstandardized
factor loading of N2 (λ21 = 0.9421) by the SD of the Neuroticism latent fac-
tor (5.04):

λ21 = .9421(5.04) = 4.75 (4.13)

Although standardized estimates often do not provide useful addi-
tional information for common forms of CFA analyses, they are helpful to
the interpretation of models where latent factors are regressed onto cate-
gorical background variables (e.g., a dummy code representing Gender: 0
= female, 1 = male), as is done in MIMIC models (see Chapter 7). In these
instances, it does not make interpretative sense to use completely stan-
dardized estimates of the relationships between the latent factors and the
observed score covariates. Consider a scenario where the latent factor of
Neuroticism is regressed onto a dummy code for gender (Gender → Neu-
roticism). Because gender is a binary observed variable (0/1), it makes lit-
tle substantive sense to consider the completely standardized regressive
path that reflects the predicted standardized score change in Neuroticism
for every standardized score increase in gender. Instead, it is better to inter-
pret the path using estimates that involve the original metric of the
dummy code for gender. This standardized parameter estimate would indi-
cate how many standardized scores Neuroticism is predicted to change as a
function of an unstandardized unit increase in gender; in other words, it
reflects the standardized score difference between males and females on
the latent dimension of Neuroticism (cf. Cohen’s d; Cohen, 1988).

Thus far, parameter estimates have been considered under the as-
sumption that marker indicators are used to define the metric of the latent
factors. However, as discussed in Chapter 3, the metric of latent variables
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can also be defined by fixing the factor variance to a specific value. When
this method is used, factor variances are usually fixed to 1.0, consistent
with traditional forms of standardization (i.e., σ2 = SD = 1.0). When factor
variances are fixed to 1.0, many aspects of the CFA solution do not change
(relative to the marker indicator approach), including overall model fit
indices, fit diagnostic information (e.g., modification indices, standardized
residuals), standardized and completely standardized parameter estimates,
and the unstandardized estimates of indicator error variances and their
corresponding standard errors and significance tests (z statistics). The pri-
mary impact that this approach will have is on the unstandardized esti-
mates of the factor loadings, factor variances, and factor covariances. Fac-
tor variances will equal 1.0 as the result of the method used to define the
latent variable metric, and there will be no corresponding standard errors
and z statistics for these fixed parameters (as occurred in the marker indi-
cator approach for indicators N1 and E1; see Table 4.4). Because all factor
variances are standardized, the factor covariances will reflect completely
standardized estimates (e.g., the factor covariance would equal –.435 in
the Table 4.4 solution). In addition, the “unstandardized” factor loadings
will take on the same values of the standardized estimates that were pro-
duced by a solution using marker indicators; that is, the “unstandardized”
and standardized parameter estimates of the CFA model will be identical.
Accordingly, the standard errors and z statistics associated with the factor
loadings (and factor covariances) will also change.

CFA MODELS WITH SINGLE INDICATORS

Another advantage of CFA over EFA is the ability to include single indica-
tor variables in the analysis. It may be necessary to use single indicators in
a CFA or SEM analysis, given the nature of the variable (e.g., sex, age) or
the unavailability of multiple measures of a construct. Variables assessed
by a single measure should not be interpreted as factors (i.e., a factor
accounts for shared variance of multiple observed measures). However, the
inclusion of single indicators in CFA is very useful in many situations. For
instance, single indicators are used in MIMIC models where latent vari-
ables and the indicators of the factors are regressed onto covariates (see
Chapter 7). Moreover, CFA is routinely used as a precursor to SEM
because the measurement model must be worked out before evaluating a
more parsimonious structural solution (cf. Figure 3.2, Chapter 3). If the
structural model will contain a mix of single indicators and latent vari-
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ables, it is important to include the single indicators in the measurement
model. If not, specification error may occur when the single indicators are
added to the SEM model; for example, the measure might have poor dis-
criminant validity with a latent variable or might better operate as an indi-
cator of a latent variable (see Chapter 5 for a detailed discussion of specifi-
cation errors). Including single indicators in the CFA allows the researcher
to examine the correlations among the latent variables and single indica-
tors before a structural model is imposed on these relationships. These
estimates will provide important information about the viability of the
structural model; for example, if a single indicator is weakly correlated
with a latent variable, this bodes poorly for a proposed structural model in
which the single indicator is specified to have a significant indirect effect
on the latent variable.

When observed measures are used as indicators of latent variables, the
CFA provides the estimate of their measurement error; that is, amount of
variance in the indicator that is not explained by the factor. Obviously, this
cannot be done for variables assessed by single indicators. However, an
error theory can be invoked for these variables by fixing the unstandard-
ized error of the indicator to some predetermined value. If the error vari-
ance is fixed to zero, then it is assumed that the indicator is perfectly reli-
able (i.e., entirely free of measurement error). This assumption may be
reasonable for some variables such as age, height, or weight. If the single
indicator is a measure of a construct (e.g., a self-esteem questionnaire), the
assumption of perfect reliability is less tenable. Fortunately, measurement
error can be readily incorporated into a dimensional indicator by fixing its
unstandardized error to some non-zero value, calculated on the basis of
the measure’s sample variance estimate and known psychometric informa-
tion (e.g., internal consistency estimate):

δx = VAR(X)(1 - ρ) (4.14)

where VAR(X) is the sample variance of the single indicator and ρ is the
reliability estimate of the indicator. Ideally, ρ would be derived from prior
psychometric research that generalizes well to the sample for which the
current analysis is being undertaken.7

To illustrate, if the sample variance of an indicator is 42.00 and the
best estimate of its scale reliability is .85, its error variance would be calcu-
lated as

δx = (42)(1 – .85) = 6.3 (4.15)
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The value of 6.3 could then be used to fix the error variance of this indica-
tor in the CFA model.

A CFA model entailing a combination of latent variables and single
indicators is presented in Figure 4.3. In this example, an epidemiological
researcher is interested in examining whether dimensions of health status
are predictive of various public health outcomes (e.g., quality of life, use of
medical services); the example is loosely based on the SF-36 Health Survey
(e.g., Ware & Sherbourne, 1992). For the sake of illustration, only a por-
tion of the variable set is included in the example, but in practice, all pre-
dictor and outcome variables to be used in the SEM analysis should be
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Correlations/Standard Deviations (SD):

ACTIV SOMA PAIN MENTH SOCF VITAL GENHLTH AGE
ACTIV 1.000

SOMAT 0.779 1.000

PAIN 0.412 0.463 1.000

MENTH 0.366 0.311 0.285 1.000

SOCF 0.280 0.273 0.269 0.784 1.000

VITAL 0.227 0.193 0.218 0.696 0.748 1.000

GENHLTH 0.417 0.452 0.365 0.539 0.605 0.456 1.000

AGE -0.118 -0.122 -0.146 -0.082 -0.073 -0.119 -0.096 1.000

SD: 19.961 15.851 3.270 5.545 9.366 13.838 8.462 11.865

FIGURE 4.3. CFA model of health status containing latent variables and
single indicators. ACTIV, physical activity; SOMA, somatic complaints; PAIN,
bodily pain; MENTH, mental health; SOCF, social functioning; VITAL, vitality;
GENHLTH, general health; N = 500.



included in the measurement model. There are two latent variables, Physi-
cal Functioning and Mental Functioning, defined by three observed mea-
sures each. A third health status variable, General Well-Being, is assessed
by one self-report measure of general health. Prior population-based stud-
ies indicate that the best reliability estimate (ρ) of this measure is .89;
thus, 11% of the total variance of this measure is estimated to be error (i.e.,
1 – .89). As shown in Figure 4.3, the SD of the general health measure is
8.462 and thus its sample variance is 71.61 (i.e., 8.4622). Because partici-
pant age will be an important covariate in the SEM analysis, it is included
in the measurement model.

In Table 4.5, Mplus syntax and selected output are presented. The
correlation matrix and indicator SDs are presented in Figure 4.3, but a raw
data file is used as input in this syntax example (N = 500 adults). The syn-
tax programming for Physical Functioning and Mental Functioning is
conducted in the usual manner. Because two indicators of Physical
Functioning are subscales from the same measure, a correlated error is
specified; that is, ACTIV WITH SOMA. Although it might be substantively
plausible to expect that a method effect exists for the indicator of general
health (e.g., it is also a subscale from the measure used to obtain indicators
of physical functioning), correlated errors cannot be specified for single
indicators because their error variances are fixed (see Chapter 5). Al-
though General Well-Being and Age are not latent variables, they are pro-
grammed as such; for example, GWB BY GENHLTH (Table 4.5). The
unstandardized factor loading of the single indicator on its “pseudofactor”
is fixed to 1.0 (in Mplus, this is a default). Next, the appropriate error vari-
ance constraints are imposed. It is assumed that age was measured without
measurement error and thus the error variance of this indicator is fixed to
zero; that is, AGE@0. Using Equation 4.14, the error variance of the gen-
eral health indicator (GENHLTH) is calculated to be (71.61)(1 – .11) =
7.88; this value is added to the model; that is, GENHLTH@7.88. Pro-
gramming would follow similar lines in other software packages; for exam-
ple, LISREL: VA 7.88 TD(7,7); EQS: /VARIANCES E7 = 7.88; Amos:
sem.Structure “E7 (7.88).”

The Figure 4.3 model fits the data reasonably well, χ2(15) = 45.00,
p < .001, SRMR = .028, RMSEA = 0.063, CFit = .137, TLI = 0.971,
CFI =.984. To ascertain that the error variance constraints were modeled as
intended, one should first inspect the appropriate section of the output; in
Mplus, this section is under the heading “Residual Variances.” As can be
seen in Table 4.5, the unstandardized and completely standardized error
variances of GENHLTH are 7.88 and .11, respectively, in accord with the
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TABLE 4.5. Mplus Syntax and Selected Results for a Measurement Model of Health
Status Involving Latent Variables and Single Indicators

Mplus Syntax

TITLE: MPLUS 3.11 CFA MODEL WITH TWO FACTORS, TWO SINGLE INDICATORS
DATA:

FILE IS CH4SI.DAT;
FORMAT IS F3,8F3;

VARIABLE:
NAMES ARE SUBJID ACTIV SOMA PAIN MENTH SOCF VITAL GENHLTH AGE;
USEV = ACTIV SOMA PAIN MENTH SOCF VITAL GENHLTH AGE;

ANALYSIS: ESTIMATOR=ML;
MODEL:

PHYSF BY ACTIV SOMA PAIN;
MENTF BY MENTH SOCF VITAL;
GWB BY GENHLTH;
AGEF BY AGE;
GENHLTH@7.88; AGE@0;
ACTIV WITH SOMA;

OUTPUT:  SAMPSTAT STANDARDIZED MODINDICES(5);

Selected Results

MODEL RESULTS
Estimates S.E. Est./S.E. Std StdYX

PHYSF     BY
ACTIV 1.000 0.000 0.000 13.496 0.677
SOMA 0.868 0.049 17.631 11.714 0.740
PAIN 0.150 0.018 8.566 2.027 0.620

MENTF     BY
MENTH 1.000 0.000 0.000 4.705 0.849
SOCF 1.850 0.072 25.787 8.705 0.930
VITAL 2.357 0.109 21.599 11.089 0.802

GWB     BY
GENHLTH 1.000 0.000 0.000 7.974 0.943

AGEF     BY
AGE 1.000 0.000 0.000 11.853 1.000

MENTF     WITH
PHYSF 28.376 4.215 6.732 0.447 0.447

GWB     WITH
PHYSF 69.058 7.881 8.763 0.642 0.642
MENTF 25.179 2.283 11.027 0.671 0.671

(cont.)



reliability information used to specify the model (e.g., proportion of error
variance = 1 – .89). Similarly, the error variance of age is 0.00 as intended.
Observe that factor loadings are estimated by Mplus for the single indica-
tor and their “pseudofactor.” These loadings are a byproduct of the error
variance constraints. For instance, the completely standardized loading of
GENHLTH on the general well-being factor (GWB) is .943. Squaring this
loading produces the reliability coefficient used to calculate the error
variance of GENHLTH; that is, .9432 = .89 (cf. Eq. 3.5, Chapter 3).
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TABLE 4.5. (cont.)

AGEF     WITH
PHYSF -30.309 9.033 -3.355 -0.189 -0.189
MENTF -5.291 2.622 -2.018 -0.095 -0.095
GWB -9.664 4.502 -2.147 -0.102 -0.102

ACTIV     WITH
SOMA 87.988 17.716 4.967 87.988 0.279

Variances
PHYSF 182.153 29.368 6.203 1.000 1.000
MENTF 22.141 1.936 11.439 1.000 1.000
GWB 63.582 4.520 14.068 1.000 1.000
AGEF 140.490 8.885 15.811 1.000 1.000

Residual Variances
ACTIV 215.495 24.525 8.787 215.495 0.542
SOMA 113.527 15.653 7.253 113.527 0.453
PAIN 6.567 0.581 11.311 6.567 0.615
MENTH 8.547 0.751 11.383 8.547 0.279
SOCF 11.781 1.874 6.287 11.781 0.135
VITAL 68.146 5.263 12.948 68.146 0.357
GENHLTH 7.880 0.000 0.000 7.880 0.110
AGE 0.000 0.000 0.000 0.000 0.000

R-SQUARE

Observed
Variable R-Square

ACTIV 0.458
SOMA 0.547
PAIN 0.385
MENTH 0.721
SOCF 0.865
VITAL 0.643
GENHLTH 0.890
AGE 1.000



Correlations involving the general well-being factor (GWB) reflect the
relationship of the GENHLTH indicator with other variables in the
model, adjusting for measurement error; for example, the correlation of
GENHLTH with Physical Functioning is .642. The factor loading of age on
the Age “factor” is 1.00, reflecting a perfect relationship between the
observed measure and its underlying “true” score.

REPORTING A CFA STUDY

Good-fitting CFA solutions are presented in this chapter to illustrate the
specification and interpretation of latent variable measurement models. In
addition to understanding how to conduct and interpret these analyses
properly, applied researchers must be aware of what information should be
presented when reporting the results of a CFA study. Indeed, although
many excellent guides have been published for reporting SEM and CFA
results (e.g., Hoyle & Panter, 1995; McDonald & Ho, 2002; Raykov,
Tomer, & Nesselroade, 1991), recent surveys have indicated that applied
research articles continue to often omit key aspects of the analyses such as
the type of input matrix used, the identifiability and exact specification of
the model, and the resulting parameter estimates (MacCallum & Austin,
2000; McDonald & Ho, 2002). Recommended information to include in a
CFA research report is listed in Table 4.6. Appendix 4.3 provides a sample
write-up of some of this suggested information using the example of the
two-factor CFA model of Neuroticism and Extraversion.

Although Table 4.6 and Appendix 4.3 are fairly self-explanatory, a few
elaborations are warranted. The parameter estimates from the two-factor
model used in this example lent themselves to presentation in a path dia-
gram (Figure 4.2), but many applied CFA models are too complex to be
presented in this fashion (e.g., models often contain a large number of
indicators and latent factors). Thus, applied CFA findings are frequently
presented in tabular formats; specifically, a p (indicator) by m (factor)
matrix of factor loadings. While a tabular approach may be preferred for
large CFA models (cf. McDonald & Ho, 2002), the researcher must be sure
to provide the remaining parameter estimates (e.g., factor and error corre-
lations) in the text, a table note, or a companion figure. Although
methodologists have underscored the importance of providing standard
errors (and/or confidence intervals) of parameter estimates, this informa-
tion is rarely reported in CFA research (MacCallum & Austin, 2000;
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TABLE 4.6. Information to Report in a CFA Study

Model Specification

• Conceptual/empirical justification for the hypothesized model
• Complete description of the parameter specification of the model

—List the indicators for each factor
—Indicate how the metric of the factors was defined (e.g, specify which observed

variables were used as marker indicators)
—Describe all freely estimated, fixed, and constrained parameters (e.g., factor

loadings and cross-loadings, random and correlated indicator errors, factor
correlations, intercepts and factor meansa)

• Demonstrate that the model is identified (e.g., positive model df, scaling of latent
variables, absence of empirical underidentification)

Input Data

• Description of sample characteristics, sample size, and sampling method
• Description of the type of data used (e.g., nominal, interval; scale range of

indicators)
• Tests of estimator assumptions (e.g., multivariate normality of input indicators)
• Extent and nature of missing data, and the method of missing data management

(e.g., direct ML, multiple imputationb)
• Provide sample correlation matrix and indicator SDs (and means, if applicablea), or

make such data available on request

Model Estimation

• Indicate the software and version used (e.g., LISREL 8.72)
• Indicate the type of data/matrices analyzed (e.g., variance–covariance, tetrachoric

correlations/asymptotic covariancesb)
• Indicate the estimator used (e.g., ML, weighted least squaresb; as justified by

properties of the input data)

Model Evaluation

• Overall goodness-of-fit
—Report model χ2 along with its df and p value
—Report multiple fit indices (e.g., SRMR, RMSEA, CFI) and indicate cutoffs used

(e.g., RMSEA ≤ .06); provide confidence intervals, if applicable (e.g., RMSEA)
• Localized areas of ill fit

—Report strategies used to assess for focal strains in the solution (e.g., modification
indices/Lagrange multipliers, standardized residuals, Wald tests, EPC values)

—Report absence of areas of ill fit (e.g., largest modification index) or indicate the
areas of strain in the model (e.g., modification index, EPC value)

• If model is respecified, provide a compelling substantive rationale for the added or
removed parameters and clearly document (improvement in) fit of the modified
models

(cont.)



McDonald & Ho, 2002). These data could also be readily presented in a
table or figure note, or in the body of the table or figure itself when only
unstandardized estimates are provided.

It should be noted that there is no “gold standard” for how a path dia-
gram should be prepared. Although some constants exist (e.g., represent-
ing observed and latent variables by rectangles and circles, respectively;
depicting a direct effect by a unidirectional arrow), the reader will encoun-
ter many variations in the applied and quantitative literature; for instance,
an indicator error variance may be represented by “e,” “θ,” “δ,” “ε,” a cir-
cle, a double-headed curved arrow, or some combination. No approach is
considered to be more correct than another. One particular method is used
throughout this book, but the reader is encouraged to peruse other sources
to decide which approach best suits his or her own tastes and purposes.

Another consideration is whether to present an unstandardized solu-
tion, completely standardized solution, or both (also, as noted in the previ-
ous section, standardized estimates may be relevant for some parameters
such as in MIMIC models). In applied CFA research, the convention has
been to report completely standardized parameters. This may be due in
part to the fact that CFA is frequently employed after EFA in the psycho-
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TABLE 4.6. (cont.)

• Parameter estimates
—Provide all parameter estimates (e.g., factor loadings, error variances, factor

variances), including any nonsignificant estimates
—Consider the clinical as well as the statistical significance of the parameter

estimates (e.g., are all indicators meaningfully related to the factors?)
—Ideally, include the standard errors or confidence intervals of the parameter

estimates
• If necessary (e.g., suitability of N could be questioned), report steps taken to verify

the power and precision of the model estimates (e.g., Monte Carlo evaluation using
the model estimates as population valuesc)

Substantive Conclusions

• Discuss CFA results in regard to their substantive implications, directions for future
research, and so on.

• Interpret the findings in context of study limitations (e.g., range and properties of the
indicators and sample) and other important considerations (e.g., equivalent CFA
modelsd)

asee Chapter 7; bsee Chapter 9; csee Chapter 10; dsee Chapter 5.



metric analysis of test instruments (e.g., multiple-item questionnaires). As
noted in Chapter 2, the tradition of EFA is to standardize both the
observed and latent variables. Often, neither the observed nor latent vari-
ables structure is standardized in the CFA analysis (e.g., a variance–
covariance matrix is inputted, a marker indicator is specified). Although
the completely standardized CFA solution can be informative (e.g., a com-
pletely standardized error indicates the proportion of variance in the indi-
cator that is not accounted for by the latent factor), the unstandardized
solution (or both) may be preferred in some instances such as in measure-
ment invariance evaluations where constraints are placed on the unstan-
dardized parameters (Chapter 7), in construct validity studies where the
indicators are composite measures with readily interpretable metrics, and
in analyses using item parcels (Chapter 9) where information regarding
the relative magnitudes of the relationships to the factors has little sub-
stantive importance or does not convey information about the original
items. As discussed in Chapter 3, there are some CFA and SEM scenarios
where exclusive reliance on completely standardized solutions can result
in misleading or erroneous conclusions (Bollen, 1989; Willett et al., 1998).

If possible, the sample input data used in the CFA should be pub-
lished in the research report. In instances where this is not feasible (e.g., a
large set of indicators are used), it is helpful for authors to make these data
available upon request (or post the data on a website). Inclusion of these
data provides a wealth of information (e.g., magnitudes and patterns of
relationships among variables) and allows the reader to replicate the
study’s models and to explore possible conceptually viable alternative
models (equivalent or better fitting; see Chapter 5). In general, the sample
correlation matrix (accompanied with SDs and Ms, if applicable) should be
provided, rather than a variance–covariance matrix. This is because the
reader will be able to analyze a variance–covariance matrix that contains
less rounding error than the typical variance–covariance matrix published
in research reports by creating it directly from the sample correlations and
SDs. Of course, there are some situations where the CFA analysis cannot
be reproduced from a published table of data. Whereas tabled data work
fine for ML analysis of data sets that contain no missing data (or where
pairwise or listwise deletion was used to manage missing data), this is not
the case for analyses that are conducted on raw data (e.g., as in analyses
that use direct ML for missing data; see Chapter 9) or that require compan-
ion matrices (e.g., asymptotic covariance as well as tetrachoric correlation
matrices in WLS-estimated models; see Chapter 9). In these cases, it may
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be preferable to make the data available by request or possibly by down-
loading from the author’s or journal’s website.

Finally, it should be emphasized that the suggestions provided in
Table 4.6 are most germane to a measurement model conducted in a single
group and thus must be adapted on the basis of the nature of the particular
CFA study. For example, many CFA investigations entail the comparison
of a target model to a substantively viable competing solution (see Chapter
5). In such studies, the recommendations listed in Table 4.6 should be
extended to the alternative models as well (e.g., also provide conceptual/
empirical justification for the competing models). In multiple-group CFA
studies (see Chapter 7), it is important to evaluate the CFA solutions sepa-
rately in each group before conducting the simultaneous analysis. In addi-
tion, the multiple-groups analysis typically entails invariance evaluation of
the CFA parameters (e.g., are the factor loadings invariant, consistent with
the notion that the indicators measure the latent construct in comparable
ways in all groups?). Thus, although all of the steps listed in Table 4.6 are
relevant, the report of a multiple-groups CFA study is considerably more
extensive than the sample write-up provided in Appendix 4.3 (e.g., data
normality screening and model fit estimation/evaluation in each group,
nested invariance evaluation; see Chapter 7).

SUMMARY

The fundamental concepts and procedures of CFA were illustrated using a
full example. As can be seen in this chapter, the proper conduct of CFA
requires a series of steps and decisions including the specification of the
measurement model (based on prior evidence and theory), selection of a
statistical estimator appropriate for the type and distributional properties
of the data (e.g., ML), choice of a latent variable software program (e.g.,
EQS, LISREL), evaluation of the acceptability of the model (e.g., overall
goodness of fit, focal areas of strain in the solution, interpretability/
strength of parameter estimates), and the interpretation and presentation
of results. Although this material was presented in the context of a well-
specified measurement model, some of the complications and issues often
encountered in applied CFA research were introduced (e.g., potential
sources of ill fit, Heywood cases, significance testing of parameter esti-
mates). These issues are considered at much greater length in the next
chapter, which focuses on the respecification and comparison of CFA
models.
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NOTES

1. Although in the case of the Figure 4.1 model, specification of a direct
effect between Neuroticism and Extraversion would produce the same fit as a solu-
tion that simply allows these factors to be intercorrelated. This is because the
potential structural component of the model (e.g., Neuroticism → Extraversion,
or Extraversion → Neuroticism) is just-identified.

2. However, in EQS, the term standardized residual is used differently. In
EQS, a standardized residual reflects the difference between the observed correla-
tion and the model-implied correlation; for example, for the N1 and N2 relation-
ship in the Figure 4.1 model, the EQS standardized residual is .016 (i.e., .767 –
.751).

3. Like Lagrange multipliers, Wald tests can be used as multivariate statistics
that estimate the change in model χ2 if sets of freed parameters are fixed.

4. Although completely standardized loadings > 1.0 are generally considered
to be Heywood cases, Jöreskog (1999) has demonstrated instances where such
estimates are valid (i.e., models that contain double-loading indicators).

5. One-tailed (directional) tests are appropriate for parameter estimates
involving variances (i.e., indicator error variances, factor variances) because these
parameters cannot have values below zero (zcrit = 1.645, α = .05, one-tailed).

6. For indicators that load on more than one factor, factor loadings should be
interpreted as partial regression coefficients; for example, a given factor loading for
a double-loading indicator would be interpreted as how much the indicator is pre-
dicted to change given a unit increase in one factor, holding the other factor con-
stant.

7. The question often arises as to which reliability estimate should be
selected for the error variance constraint in situations where the measure in ques-
tion has an extensive psychometric history or the quality of the extant psychomet-
ric evidence is poor. Although qualitative considerations are important (e.g., selec-
tion guided by the quality and generalizability of psychometric studies), it is often
useful to conduct a sensitivity analysis in which the stability of the results is exam-
ined using a range of viable reliability estimates.
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Appendix 4.1

Model Identification Affects the Standard
Errors of the Parameter Estimates

Chapter 9 discusses the fact that the standard error of the parameter estimates
of the CFA solution should not be trusted when the ML estimator is used
when the data are non-normal (i.e., an estimator robust to non-normality
should be employed). If the standard errors are incorrect, significance testing
and confidence interval estimation of the parameter estimates are under-
mined. However, even when the assumptions of the fitting function hold, usu-
ally a problem still exists in the estimation of standard errors and their corre-
sponding z tests, confidence intervals, and Wald tests. Specifically, standard
errors are not invariant to the method used to define the scale of the latent variable.
In other words, the magnitude of the standard error and corresponding z test
of a parameter estimate tend to vary based on the selection of the marker indi-
cator or when the scale of the latent variable is defined by fixing its variance to
1.0.

To illustrate, the factor covariance from the two-factor model of Neuroti-
cism and Extraversion (Figure 4.1) will be used as the example (although the
illustration would apply to any free parameter in the solution). The model is
estimated three times, using differing approaches to scale the latent factors:
(1) using N1 and E1 as the marker indicators (as in Figure 4.2); (2) using N4
and E4 as the marker indicators; and (3) fixing the variances of Neuroticism
and Extraversion to 1.0.

It is important to note that the manner in which the scale of the latent
variables is identified has no impact on overall goodness of fit. Indeed,
the three models produce identical goodness-of-fit indices, for example,
χ2(19) = 13.23, p = .83. However, each model produces different standard
errors (SE) and test statistics (z):

Factor Covariance
Estimate SE z

Model 1 (N1, E1 as markers) –0.431 (–0.453) 0.079 5.465
Model 2 (N4, E4 as markers) –0.430 (–0.453) 0.081 5.288
Model 3 (φ11 = φ22 = 1.0) –0.453 (–0.453) 0.059 7.395

(Completely standardized estimates are in parentheses; that is, these estimates
are not affected by the scaling approach.)
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In this example, the results are consistent in their indication that the null
hypothesis is false (i.e., the factor covariance significantly differs from zero).
However, this will not always be the case in applied data sets—that is, different
approaches to scaling the latent variable may yield different conclusions regarding
the statistical significance of freely estimated parameters. Because standard
errors are used in the computation of confidence intervals and Wald tests, the
same problem applies to these statistics as well.

The explanation for why standard errors vary across identification meth-
ods is very technical (e.g., SEs are determined on the basis of the curvature of
fit function when the maximum height is reached; curvature at the maximum
differs depending on the identification method). Interested readers are re-
ferred to Bollen (1989) and Gonzalez and Griffin (2001) to learn more about
this issue. However, a more general question is: How can one test the statistical
significance of CFA parameters if standard errors are not invariant to the latent
variable scaling method? Fortunately, the standard χ2 difference procedure can
be implemented for this purpose.

As noted in Chapter 3, a nested model has a subset of the free parameters
of another model (often referred to as the parent model). Gonzalez and Griffin
(2001) note that instead of approximating the value of the fitting function by a
measure of curvature that is sensitive to the scaling of the latent variable (i.e.,
as in typical SEs and the corresponding z tests), it is better to evaluate statisti-
cal significance by comparing model fit when the parameter of interest is
freely estimated (i.e., maximum height) to when the parameter is constrained
to the value of the null hypothesis. In the current example, this entails com-
paring the fit of the model where the factor covariance is freely estimated (the
parent model) to the model that constrains the factor variance to zero (the
nested model). The resulting χ2 difference test (also referred to as the likeli-
hood ratio test) is not affected by the manner in which the metric of the latent
variable is set (cf. Figure 3 and associated text in Gonzalez & Griffin, 2001).
Using Model 1 as the parent model (Model P), the χ2 difference test would be
as follows:

χ2 df
Model N (φ21 fixed to 0) 54.198 20
Model P (φ21 free) 13.232 19

χ2 difference 40.966 1

As the critical value of χ2 with df = 1 is 3.84 (α = .05), it can be concluded
that the parent model provides a significantly better fit to the data than the
nested model. This is because the difference in model χ2 follows a χ2 distribu-
tion with one degree of freedom; χ2

diff (1) = 40.966, p < .001. More germane to
the present discussion is the relationship between the z and χ2 distributions
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that was noted in Chapters 3 and 4: that is, at df = 1, the square root of the χ2

is normally distributed. Thus, in the current example, the z test of the null
hypothesis (that the factor covariance of Neuroticism and Extraversion does
not differ from zero) can be obtained by taking the square root of the χ2 differ-
ence value:

Z = SQRT(40.966) = 6.40 (p < .001)

Observe that the z value of 6.40 does not correspond to any of the z values
derived from the three models that were estimated above. Although this exam-
ple used Model 1 as the parent model, the same result would be obtained
using either Model 2 or Model 3 instead.

Although this approach is recommended over the typical z tests provided
by software program outputs for determining the statistical significance of
parameter estimates, a few limitations should be noted. First, the method is
not feasible in situations where the null (nested) model would be under-
identified. For instance, we could not employ this method to test the signifi-
cance of the factor covariance if Neuroticism and Extraversion were measured
by two indicators each (cf. Model D, Figure 3.7 in Chapter 3). Second, this
procedure is not appropriate when the null hypothesis entails fixing a parame-
ter to a value that is on the border of inadmissibility (e.g., setting a factor vari-
ance, indicator error variance, or disturbance to a value of 0). As discussed in
later chapters (e.g., Chapter 5), models that contain borderline values do not
yield proper χ2 distributions (cf. Self & Liang, 1987). Third, this approach
addresses only significance testing and does not address calculation of confi-
dence intervals (but see Neale & Miller, 1997). There are alternative ways of
obtaining standard errors in each of the above three scenarios, but these meth-
ods are somewhat complex and cumbersome. Finally, applied users may balk
at this approach because performing nested χ2 tests for each parameter is
time-consuming. Gonzalez and Griffin (2001) recommend that, at the very
least, researchers perform these tests on the parameters of the model that are
most important to the research question (e.g., structural relationships among
latent variables).
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Appendix 4.2

Goodness of Model Fit Does Not Ensure
Meaningful Parameter Estimates

Novice CFA researchers occasionally confuse the notions of goodness of
model fit and the meaningfulness of the model’s parameter estimates. Even if a
model is very successful at reproducing the observed relationships in the input
matrix (S), this does not ensure that the latent variables are substantively
interrelated or account for meaningful variance in the indicators. Thus, it is
just as important to consider the size of the model’s parameter estimates as it is
to consider the model’s goodness of fit when determining the acceptability of
the solution. This point is illustrated below using a somewhat exaggerated
example.

Keeping with the example presented in Figure 4.1, a researcher has devel-
oped a brief questionnaire designed to measure the constructs of neuroticism
and extraversion (three items each). Thus, a two-factor model is anticipated in
which the first three items (X1–X3) load onto a latent factor of Neuroticism,
and the remaining three items (X4–X6) load onto a distinct factor of Extra-
version. The questionnaire is administered to 300 participants and the two-
factor model is fit to the following sample data (for ease of interpretation, a
completely standardized matrix is presented):

X1 X2 X3 X4 X5 X6
X1 1.0000
X2 0.0500 1.0000
X3 0.0600 0.0750 1.0000
X4 -0.0100 -0.0125 -0.0150 1.0000
X5 -0.0120 -0.0150 -0.0180 0.0750 1.0000
X6 -0.0100 -0.0125 -0.0150 0.0875 0.0750 1.0000

The following completely standardized solution results from this sample
matrix and two-factor model specification:
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In fact, this solution provides a perfect fit to the data, χ2(8) = 0.00; for exam-
ple, multiplying the factor loadings of X1 and X2 perfectly reproduces their
observed relationship (.20 × .25 = .05), multiplying the factor loading of X1
and X5 with the factor correlation perfectly reproduces the observed relation-
ship between X1 and X5 (.20 × .30 × –.20 = –.012). However, goodness of fit of
the two-factor solution is not determined by the absolute magnitude of the
sample correlations, but by whether the differential magnitude of the correla-
tions can be reproduced by the specified model and its resulting parameter
estimates. Accordingly, because the X1–X3 indicators are more strongly
intercorrelated with each other than they are with the X4–X6 indicators (and
vice versa), the two-factor model specification fits the data well. Nevertheless,
the size of the resulting parameter estimates would lead the sensible researcher
to reject the two-factor model and the questionnaire on which it is based. For
example, the latent factor of Neuroticism accounts for only 4% of the variance
in the X1 indicator (.202 = .04); that is, the greatest part of its variance (96%)
is not explained by the latent variable. Indeed, the largest percentage of vari-
ance explained in the items is only 9% (X3 and X5). Thus, the questionnaire
items are very weakly related to the latent factors and should not be consid-
ered to be reasonable indicators of their purported constructs.
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Appendix 4.3

Example Report of the Two-Factor CFA Model
of Neuroticism and Extraversion

Based on prior evidence and theory bearing on the Big Five model of personal-
ity, a two-factor model was specified in which anxiety (N1), hostility (N2),
depression (N3), and self-consciousness (N4) loaded onto the latent variable
of Neuroticism, and in which warmth (E1), gregariousness (E2), assertiveness
(E3), and positive emotions (E4) loaded onto the latent variable of Extra-
version. The indicators were subscales of the NEO Personality Inventory and
had a range of scores from 0 to 32, with higher scores reflecting higher levels
of the personality dimension. Figure 4.1 depicts the complete specification of
the two-factor model. Anxiety (N1) and warmth (E1) were used as marker
indicators for Neuroticism and Extraversion, respectively. The measurement
model contained no double-loading indicators and all measurement error
was presumed to be uncorrelated. The latent factors of Neuroticism and
Extraversion were permitted to be correlated based on prior evidence of a
moderate inverse relationship between these dimensions. Accordingly, the
model was overidentified with 19 df.

As noted in the Method section, the NEO was administered to 250 col-
lege undergraduates who participated in the study for course credit (see
Method section for a description of sample demographics). All 250 cases had
complete NEO data. Prior to the CFA analysis, the data were evaluated for
univariate and multivariate outliers by examining leverage indices for each
participant. An outlier was defined as a leverage score that was five times
greater than the sample average leverage value. No univariate or multivariate
outliers were detected. Normality of the indicators was examined using
PRELIS 2.30 (Jöreskog & Sörbom, 1996b). The standardized skewness score
was 1.17 and the standardized kurtosis score was 1.32 (ps > .05). The joint
test of non-normality in terms of skewness and kurtosis was not significant,
χ2 = 8.35, p = .38.

Thus, the sample variance–covariance matrix was analyzed using LISREL
8.72, and a maximum likelihood minimization function (sample correlations
and SDs are provided in Figure 4.1). Goodness of fit was evaluated using the
standardized root mean square residual (SRMR), root mean square error of
approximation (RMSEA) and its 90% confidence interval (90% CI) and test of
close fit (CFit), comparative fit index (CFI), and the Tucker–Lewis index
(TLI). Guided by suggestions provided in Hu and Bentler (1999), acceptable
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model fit was defined by the following criteria: RMSEA (≤ .06, 90% CI ≤ .06,
CFit ns), SRMR (≤ .08), CFI (≥ .95), and TLI (≥ .95). Multiple indices were
used because they provide different information about model fit (i.e., absolute
fit, fit adjusting for model parsimony, fit relative to a null model); used
together, these indices provide a more conservative and reliable evaluation of
the solution.

Each of the overall goodness-of-fit indices suggested that the two-factor
model fit the data well, χ2(19) = 13.23, p = .83, SRMR = .019, RMSEA = 0.00
(90% CI = 0.00 – .018; CFit = .99), TLI = 1.007, CFI = 1.00. Inspection of
standardized residuals and modification indices indicated no localized points
of ill fit in the solution (e.g., largest modification index = 3.49, largest
standardized residual = 1.87). Unstandardized and completely standardized
parameter estimates from this solution are presented in Figure 4.2 (standard
errors of the estimates are provided in Table 4.4). All freely estimated unstan-
dardized parameters were statistically significant (ps < .001). Factor loading
estimates revealed that the indicators were strongly related to their purported
latent factors (range of R2s = .49–.78), consistent with the position that the
NEO scales are reliable indicators of the constructs of neuroticism and
extraversion. Moreover, estimates from the two-factor solution indicate a
moderate relationship between the dimensions of Neuroticism and Extra-
aversion (–.435), in accord with previous evidence and theory.

<Discussion of other implications, limitations, and future directions would
follow>
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5

CFA Model Revision
and Comparison

In Chapter 4, many of the procedures and issues associated with
model specification were introduced in the context of a good-fitting,
two-factor CFA solution of Neuroticism and Extraversion. In this chap-
ter, these concepts are further illustrated and extended, using initially
poor-fitting solutions. Although poor-fitting models are frequently en-
countered in applied research, SEM sourcebooks rarely deal with this
topic in detail because of the numerous potential sources of ill-fit, and
the fact that proper model specification and respecification hinges
directly on the substantive context of the analysis. Thus, although some
examples are provided, readers must adapt these general guidelines
and principles to the specific aspects of their own data sets and mod-
els. This chapter discusses the fact that model respecification can also
be carried out to improve the parsimony and interpretability of a CFA
solution. The sources of improper solutions, and ways to deal with
them, are also discussed. In addition, the technique of EFA within the
CFA framework (E/CFA) is presented as an intermediate step between
EFA and CFA. This methodology allows the researcher to explore mea-
surement structures more fully to develop more realistic (i.e., better-
fitting) CFA solutions. The chapter concludes with a discussion of
equivalent CFA models, an issue that is germane to virtually all mea-
surement models but is largely unrecognized in applied research.

GOALS OF MODEL RESPECIFICATION

Often a CFA model will need to be revised. The most common reason for
respecification is to improve the fit of the model. In this case, the results of
an initial CFA indicate that one or more of the three major criteria used to
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evaluate the acceptability of the model are not satisfied; that is, the model
does not fit well on the whole, does not reproduce some indicator relation-
ships well, or does not produce uniformly interpretable parameter esti-
mates (see Chapter 4). Based on fit diagnostic information (e.g., modifica-
tion indices) and substantive justification, the model is revised and fit to
the data again in the hope of improving its goodness of fit. The sources of
CFA model misspecification, and the methods of detecting and rectifying
those sources, are discussed in the next section of this chapter.

In addition, respecification is often conducted to improve the parsi-
mony and interpretability of the CFA model. Rarely do these forms of
respecification improve the fit of the solution; in fact, they may worsen
overall fit to some degree. For example, the results of an initial CFA may
indicate that some factors have poor discriminant validity—that is, two
factors are so highly correlated that the notion that they represent distinct
constructs is untenable. Based on this outcome, the model may be
respecified by collapsing the highly overlapping factors; that is, the indica-
tors that loaded on separate, overlapping factors are respecified to load on
a single factor. Although this respecification may foster the parsimony and
interpretability of the measurement model, it will lead to some decrease in
goodness of fit relative to the more complex initial solution.

Two other types of model respecification frequently used to improve
parsimony are multiple-groups solutions and higher-order factor models.
These respecifications are conducted after an initial CFA model has been
found to fit the data well. For instance, equality constraints are placed on
parameters in multiple-groups CFA solutions (e.g., factor loadings) to
determine the equivalence of a measurement model across groups (e.g., do
test items show the same relationships to the underlying construct of cog-
nitive ability in men and women?). With the possible exception of parsi-
mony fit indices (e.g., RMSEA, TLI), these constraints will not improve the
fit of the model as compared with a baseline solution where the parameters
are freely estimated in all groups. In higher-order CFA models, the goal is
to reproduce the correlations among the factors of an initial CFA solution
with a more parsimonious higher-order factor structure; for example, can
the six correlations among the four factors of an initial CFA model be
reproduced by a single higher-order factor? As with the previous examples,
this respecification cannot improve model fit because the number of
parameters in the higher-order factor structure is less than the number of
freely estimated factor correlations in the initial CFA model. Multiple-
groups solutions and higher-order factor models are discussed in Chapter
7 and Chapter 8, respectively.
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SOURCES OF POOR-FITTING CFA SOLUTIONS

In a CFA model, the main potential sources of misspecification are the
number of factors (too few or too many), the indicators (e.g., selection of
indicators, patterning of indicator–factor loadings), and the error theory
(e.g., uncorrelated vs. correlated measurement errors). As discussed in
Chapter 4, a misspecified CFA solution may show itself in several aspects
of the results: (1) overall goodness-of-fit indices that fall below accepted
thresholds (e.g., CFI, TLI < .95); (2) large standardized residuals or modi-
fication indices; and (3) unexpectedly large or small parameter esti-
mates or “Heywood cases,” which are estimates with out-of-range values.
Standardized residuals and modification indices are often useful for deter-
mining the particular sources of strain in the solution. However, these sta-
tistics are most apt to be helpful when the solution contains minor mis-
specifications. When the initial model is grossly misspecified, specification
searches are not nearly as likely to be successful (MacCallum, 1986).

Number of Factors

In practice, misspecifications resulting from an improper number of fac-
tors should occur rarely. When this occurs, it is likely that the researcher
has moved into the CFA framework prematurely. CFA hinges on a strong
conceptual and empirical basis. Thus, in addition to a compelling substan-
tive justification, CFA model specification is usually supported by prior
(but less restrictive) exploratory analyses (i.e., EFA) that have established
the appropriate number of factors, and pattern of indicator–factor relation-
ships. Accordingly, gross misspecifications (e.g., specifying too many or
too few factors) should be unlikely when the proper groundwork for CFA
has been conducted.

However, there are some instances where EFA has the potential to
provide misleading information regarding the appropriate number of fac-
tors in CFA. This is particularly evident in scenarios where the relation-
ships among indicators are better accounted for by correlated errors than
separate factors. A limitation of EFA is that its identification restrictions
preclude the specification of correlated indicator errors (see Chapters 2
and 3). Thus, the results of EFA may suggest additional factors when in
fact the relationships among some indicators are better explained by corre-
lated errors from method effects. A method effect exists when some of the
differential covariance among items is due to the measurement approach
rather than the substantive latent factors. Method effects may stem from
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the general assessment modality (e.g., questionnaires, behavioral observa-
tion ratings, clinical interview ratings). Or more specifically, these effects
may be due to similarly or reverse-worded assessment items, or other
sources such as items with differential proneness to response set, acquies-
cence, or social desirability.1 A comprehensive review of the potential
sources of method effects is provided in Podsakoff, MacKenzie, Lee, and
Podsakoff (2003).

The influence of method effects has been illustrated in factor analyses
of the Self-Esteem Scale (SES; Rosenberg, 1965) (e.g., Marsh, 1996; Tomás
& Oliver, 1999; Wang, Siegal, Falck, & Carlson, 2001) and the Penn State
Worry Questionnaire (PSWQ; Meyer, Miller, Metzger, & Borkovec, 1990)
(e.g., Brown, 2003; Fresco, Heimberg, Mennin, & Turk, 2002). Specifically,
this research has shown the impact of method effects in questionnaires
comprised of some mixture of positively and negatively worded items (the
SES contains 4 positively worded items, e.g., “I feel good about myself,”
and 3 negatively worded items, e.g., “At times I think I am no good at all”;
the PSWQ contains 11 items worded in the symptomatic direction, e.g., “I
worry all the time,” and 5 items worded in the nonsymptomatic direction,
e.g., “I never worry about anything”). In other words, the differential
covariance among these items is not based on the influence of distinct,
substantively important latent dimensions. Rather, this covariation reflects
an artifact of response styles associated with the wording of the items (cf.
Marsh, 1996).

Nevertheless, studies that conducted EFAs with these measures rou-
tinely reported two-factor solutions, with one factor comprised of posi-
tively worded items (SES: “Positive Self-Evaluation;” PSWQ: “Absence of
Worry”) and the second factor comprised of negatively worded items (SES:
“Negative Self-Evaluation”; PSWQ: “Worry Engagement”). However, sub-
sequent CFA studies challenged the conceptual utility of these two-factor
models (e.g., Brown, 2003; Hazlett-Stevens, Ullman, & Craske, 2004;
Marsh, 1996). For example, because the PSWQ was designed to measure
the trait of pathological worry, what is the practical and conceptual impor-
tance of a dimension of “absence of worry” (Brown, 2003)? In both lines
of research, the CFA studies (e.g., Brown, 2003; Marsh, 1996) demon-
strated the substantive (i.e., interpretability) and empirical (i.e., goodness
of fit) superiority of single-factor solutions where the additional covari-
ance stemming from the directionality of item wording was accounted for
by correlated measurement errors (for a detailed discussion of this ap-
proach, see Chapter 6). This also highlights the importance of keeping
substantive issues firmly in mind when formulating and interpreting EFA
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and CFA solutions. In the above examples, two-factor EFA solutions for
SES and PSWQ items are apt to provide a better fit (in terms of χ2, RMSEA,
etc.) than a one-factor model. Although the viability of a one-factor model
with correlated errors could not be explored within the EFA framework,
the acceptability of these two-factor solutions could be challenged on sub-
stantive grounds, despite their superior fit.

In the case of a typical measurement model of congeneric indicator
sets (a model in which there are no double-loading items and no corre-
lated errors), a CFA solution with too few factors will fail to adequately
reproduce the observed relationships among several indicators. For in-
stance, consider the scenario where the two-factor model of Neuroticism
and Extraversion in Chapter 4 is specified as a one-factor solution with no
correlated indicator errors (ML estimation). The overall fit of this solution
is poor, χ2(20) = 373.83, p < .001, SRMR = .187, RMSEA = .306 (90% CI =
.283 to .330; CFit p < .001), TLI = .71, CFI = .79. As seen in Table 5.1,
both the standardized residuals and modification indices indicate that, as a
consequence of forcing the four Extraversion indicators (E1–E4) to load
on the same latent variable as the four indicators of Neuroticism (N1–N4),
the parameter estimates of the solution markedly underestimate the
observed relationships among the E1–E4 measures (see Chapter 4 for
guidelines on interpreting modification indices and standardized residu-
als). Specifically, the range of standardized residuals for the Extraversion
indicators range from 7.17 to 9.75, and modification indices range from
51.43 to 91.09. It is noteworthy that in the case of a one-factor solution,
modification indices can appear only in sections of the results that pertain
to indicator measurement errors (e.g., the Theta-Delta matrix in LISREL;
see Table 5.1). Although the “true” model in this instance is a two-factor
solution (see Figure 4.2, Chapter 4), the fact that fit diagnostics appear
only in this fashion might lead novice CFA researchers to conclude that
correlated measurement errors are required. Modification indices can
point to problems with the model that are not the real source of mis-fit.
Again, this underscores the importance of an explicit substantive basis
(both conceptual and empirical) for model (re)specification; for example,
specifying a model with correlated errors among the Extraversion indica-
tors is not well founded in relation to a model entailing two distinct fac-
tors. In this example, the pattern of relationships in the input matrix
(see Figure 4.1, Chapter 4), in addition to the aggregation of standardized
residuals and modification indices associated with a set of indicators
(E1–E4; see Table 5.1), would provide clear empirical evidence against a
simple one-factor solution. However, the determination of whether such
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outcomes signify distinct factors versus method effects (or minor factors) is
not always clear.

The nested model comparison methodology is often used in the
applied literature to statistically compare the fit of CFA models that differ
in terms of the number of latent factors (e.g., does a two-factor model of
Neuroticism and Extraversion provide a better fit to the data than a one-
factor model?). Recall that a nested model contains a subset of the freed
parameters of another solution (Chapters 3 and 4). Consider the following
one-factor models involving the same set of 5 indicators (number of ele-
ments of the input variance–covariance matrix = 5(6)/2 = 15 = 5 variances,
10 covariances). Model N (the nested model) is a simple one-factor solu-
tion with no correlated measurement errors; thus, it consists of 10 freed
parameters (5 factor loadings, 5 indicator errors, factor variance is fixed to
1.0 to define latent variable metric), and the model has 5 df (15 – 10).
Model P (the parent model) is identical to Model N, with the exception
that a correlated error is specified for the fourth and fifth indicators; thus,
it consists of 11 freely estimated parameters (5 factor loadings, 5 indicator
errors, 1 correlated error), and this model’s df = 4 (15 – 11). In this sce-
nario, Model N is nested under Model P; if a path is dropped from Model
P—the correlated residual for indicators 4 and 5—Model N is formed. In
other words, Model N contains a subset of the freed parameters of the par-
ent model, Model P; a nested model will possess a larger number of dfs
than the parent model, in this case the df difference is 1, that is, 5 – 4. In
Model N, the correlations among all indicator errors are fixed to zero. In
Model P, this is not the case because the correlation between the residuals
of two indicators is freely estimated.

Models that differ in the number of latent factors are considered
nested models. For example, consider the one- and two-factor solutions
for the 8 indicators of Neuroticism and Extraversion (b = 36 = 8 variances
and 28 covariances). The two-factor solution discussed in Chapter 4 con-
tains 17 freely estimated parameters: 6 loadings, 8 indicator errors, 2 factor
variances, 1 factor covariance (the loadings of N1 and E1 were fixed as
marker indicators). Thus, this two-factor model has df = 19 (36 – 17). In
contrast, the one-factor solution presented above contains 16 freed param-
eters: 7 loadings, 8 errors, 1 factor variance (the loading of N1 was fixed as
the marker indicator). The one-factor solution has df = 20 (36 – 16).
Although structurally more discrepant than the Model N versus Model P
example described previously, the one-factor model could be construed as
nested under the two-factor solution, again with a difference of df = 1 (i.e.,
20 – 19). This single df difference relates to factor correlation in the two-
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factor solution. Specifically, the two-factor solution would provide a model
fit identical to the one-factor model if the correlation between Neuroticism
and Extraversion was fixed to 1.0. Under this specification, the factors
would be identical (i.e., 100% shared variance) and thus the indicators
would relate to the factors in the same fashion as in the one-factor solu-
tion. Accordingly, the one-factor solution can be viewed as a more con-
strained version of the two-factor model; that is, in the two-factor model
the factor correlation is freely estimated, and thus has one less df. This
principle generalizes to solutions with larger numbers of factors (e.g., a
four-factor solution versus a three-factor solution in which two of the fac-
tors from the former model are collapsed).

When models are nested, the χ2 statistic can be used to statistically
compare the fit of the solutions. Used in this fashion, χ2 is often referred to
as the χ2 difference test (χ2

diff) or the nested χ2 test. If a model is nested
under a parent model, the simple difference in the model χ2s is also dis-
tributed as χ2 in many circumstances (for exceptions to this guideline, see
Chapter 9). For example, in the case of the one- versus two-factor model
of Neuroticism and Extraversion, the χ2 difference test would be calcu-
lated as follows:

df χ2

One-factor model 20 373.83
Two-factor model 19 13.23 (see Chapter 4)
χ2 difference (χ2

diff) 1 360.60

Thus, χ2
diff (1) = 360.60. In this example, the χ2 difference test has 1 df,

which reflects the difference in model dfs for the one- and two-factor solu-
tions (20 – 19). Therefore, the critical value for χ2

diff in this example is
3.84 (α = .05, df = 1). Because the χ2

diff test value exceeds 3.84 (360.60), it
would be concluded that the two-factor model provides a significantly
better fit to the data than the one-factor model. It is also important that the
two-factor model fit the data well. Use of the χ2 difference test to compare
models is not justified when neither solution provides an acceptable fit to
the data.

However, some methodologists would argue that models that differ in
regard to the number of latent factors are not nested. This is because the
restriction required to make the two-factor model equivalent to the one-
factor model (or a three-factor model equivalent to a two-factor model,
etc.) entails a fixed parameter that is on the border of admissible parameter
space: a factor correlation of 1.0 (i.e., a factor correlation > 1.0 constitutes
an out-of-range parameter). In other words, nested models that contain
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such borderline values (e.g., unit factor correlations, indicator error vari-
ances fixed to zero) may not yield proper χ2 distributions, and thus the χ2

difference test would also be compromised. Thus, the information crite-
rion indices (e.g., AIC, ECVI; see Eqs. 5.2 and 5.4) could also be consid-
ered and reported in instances where the researcher wishes to compare
CFA models that differ in the number of factors. These indices are dis-
cussed later in this chapter.

Based on the above illustration, the relationship between χ2
diff and

modification indices should be more apparent. As discussed in Chapter 4,
modification indices represent the predicted decrease in model χ2 if a fixed
or constrained parameter was freely estimated. Accordingly, modification
indices (and univariate Lagrange multipliers, cf. EQS) reflect expected χ2

changes associated with a single df. However, nested models often involve
solutions that differ by more than a single df. For example, a two- and
three-factor measurement model of the same data set would differ by two
degrees of freedom; that is, the two-factor model contains one factor
covariance, the three-factor model contains three factor covariances. Mea-
surement invariance evaluation (Chapter 7) typically entails simulta-
neously placing constraints on multiple parameters (e.g., constraining fac-
tor loadings to equality in two or more groups). Such models are also
nested, but differ by more than a single df. Moreover, modification indices
differ from χ2

diff test values in that they represent an estimate of how much
model χ2 will decrease after freeing a fixed or constrained parameter. Quite
often, the actual difference in model χ2 (reflected by χ2

diff) produced by a
single df model modification differs from the estimate of χ2 change pro-
vided by the modification index (this is also true for expected parameter
change values; see Chapter 4).

Although applied researchers often compare CFA measurement mod-
els that differ in number of latent factors, it is important that a strong con-
ceptual rationale exist for doing so. Occasionally, such analyses are “straw
man” comparisons, where the models specified as competing solutions to
the hypothesized model have dubious substantive bases and little likeli-
hood of providing an equivalent or superior fit to the data; for example, in
the psychometric evaluation of a questionnaire, comparing a three-factor
model to a one-factor model, when in fact the measure was designed to
be multifactorial and prior EFA research has supported this structure.
Whereas the one- versus two-factor models of Neuroticism and Extra-
version were presented in this chapter to discuss some of the concepts and
issues of model comparison, this criticism would apply; that is, there was
no basis for the one-factor model, in view of compelling theory and scien-

CFA Model Revision and Comparison 165



tific evidence for the distinctiveness of Neuroticism and Extraversion.
Thus, the researcher should provide justification for both the hypothesized
and alternative CFA models.

If too many factors have been specified in the CFA model, this is
likely to be detected by correlations between factors that approximate
±1.0, and so the latent dimensions have poor discriminant validity. In
applied research, a factor correlation that equals or exceeds .85 is often
used as the cutoff criterion for problematic discriminant validity (cf.
guidelines for multicolinearity in regression; Cohen et al., 2003;
Tabachnick & Fidell, 2001). When factors overlap to this degree, it may be
possible to combine factors to acquire a more parsimonious solution. The
goal of such respecification is not to improve the overall fit of the model
(e.g., a model with fewer factors entails a smaller number of freely esti-
mated parameters), but ideally the fit of the more parsimonious solution
will be similar to the initial model, assuming that overall fit of the initial
model was satisfactory, except for the excessive correlation between two
factors. Again, revisions of this nature require a clear rationale.

Earlier in this chapter, studies on method effects arising from reverse-
worded items were briefly discussed. A paper from this literature provides
an applied example of excessive overlap between latent factors. Recall that
in the Brown (2003) study, a one-factor model of the PSWQ was hypothe-
sized in which all 16 items were specified to load on a single dimension of
pathological worry, with correlated errors to account for method effects
from reversed items. Because a two-factor solution (“Worry Engagement,”
“Absence of Worry”; cf. Fresco et al., 2002) had prevailed in prior EFA and
CFA studies of the PSWQ, it was also fit to the data in Brown (2003) to
serve as a competing solution to the hypothesized one-factor model.
Results of this CFA indicated poor discriminant validity of the Worry
Engagement and Absence of Worry latent dimensions; that is, these factors
were highly correlated (e.g., r = .87; Brown, 2003). This finding, along
with other evidence and considerations (e.g., superior fit of the hypothe-
sized one-factor model, no substantive basis for an “absence of worry”
dimension), strongly challenged the acceptability of a two-factor solution.

An alternative to combining two highly correlated factors is to drop
one of the factors and its constituent indicators. Although the best reme-
dial approach depends on the specific scientific context, dropping a factor
might be favored if one of the factors is defined by only a few indicators or
has limited variance, or if substantive and practical considerations support
this strategy (e.g., there are clear advantages to developing a briefer ques-
tionnaire).
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Indicators and Factor Loadings

Another potential source of CFA model misspecification is an incorrect
designation of the relationships between indicators and the latent factors.
This can occur in the following manners (assuming the correct number of
factors was specified): (1) the indicator was specified to load on one factor,
but actually has salient loadings on two or more factors; (2) the indicator
was specified to load on the wrong factor; and (3) the indicator was speci-
fied to load on a factor, but actually has no salient relationship to any fac-
tor. Depending on the problem, the remedy will be either to respecify the
pattern of relationships between the indicator and the factors or to elimi-
nate the indicator from the model altogether.

Fit diagnostics for these forms of misspecifications are presented in
context of the CFA measurement model presented in Figure 5.1. The path
diagram in this figure represents the latent structure of the population
measurement model; a sample variance–covariance matrix for this model
(N = 500) was generated using the Monte Carlo utility in Mplus (see
Chapter 10). In this example, a researcher has developed a 12-item ques-
tionnaire (items are rated on 0–8 scales) designed to assess young adults’
motives to consume alcoholic beverages (cf. Cooper, 1994). The measure
was intended to assess three facets of this construct (4 items each): (1)
coping motives (items 1–4), (2) social motives (items 5–8), and (3)
enhancement motives (items 9–12). All of the items were phrased in the
positive direction (e.g., item 5: “Because you feel more self-confident
about yourself”), with the exception of items 11 and 12, which are reverse-
worded and scored. Although the three-factor model was intended to pos-
sess congeneric item sets, the “true” model contains one double-loading
item (item 4) and one correlated error resulting from the reverse wording
(cf. Marsh, 1996). Figure 5.1 presents the completely standardized param-
eter estimates and overall fit of this model; LISREL syntax and the input
matrix are provided in Table 5.2. As seen in this figure, fit indices were
consistent with good model fit; this outcome was supported by standard-
ized residuals below 2.00 and modification indices below 4.00. All unstan-
dardized parameter estimates were statistically significant (ps < .001) and
of a magnitude in accord with expectation.

Now consider the various forms of indicator–factor misspecifications
previously mentioned. For instance, a poor-fitting model may result from
specification of congeneric indicator sets, when in fact some indicators
load on more than one factor. In the current example, the researcher is pre-
dicting such a model in which four items each load on the three latent
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dimensions of drinking motives (including item 4, which is expected to
load only on the Social Motives factor). When this model is fit to the data
(the correlated error of items 11 and 12 is included), the following fit indi-
ces result: χ2(50) = 61.535, p = .127, SRMR = .032, RMSEA = .025 (90% CI
= 0.00 to .040; CFit p = .998), TLI = .994, CFI = .996. Note that this solu-
tion has one more df than the “true” model because the relationship
between item 4 and Social Motives has been fixed to zero; hence, this solu-
tion is nested under the “true” model.2

Selected results of this solution are presented in Table 5.3: standard-
ized residuals, modification indices, completely standardized expected
parameter change values (EPCs), and completely standardized estimates of
factor loadings and factor correlations. These data exemplify several points
made earlier in this chapter and in Chapter 4. For instance, researchers
(e.g., MacCallum, 1986) have found that specification searches based on
modification indices are more likely to be successful when the model con-
tains only minor misspecifications. Thus, following the recommendation
(cf. Jöreskog, 1993) of freeing a fixed or constrained parameter with the
largest modification index (provided that this parameter can be interpreted

168 CONFIRMATORY FACTOR ANALYSIS FOR APPLIED RESEARCH

FIGURE 5.1. Completely standardized parameter estimates from the three-fac-
tor CFA model of a 12-item Alcohol Drinking Motives Questionnaire (N = 500).
Overall fit of the model: χ2(49) = 44.865, p = .641, SRMR = .025, RMSEA = 0.00
(90% CI = 0.00 to 0.025; CFit p = 1.00) TLI = 1.002, CFI = 1.00. All freely esti-
mated unstandardized parameter estimates are statistically significant (p < .001).
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TABLE 5.2. LISREL Syntax for a Three-Factor Model of a Alcohol Drinking
Motives Questionnaire

TITLE THREE FACTOR MODEL FOR DRINKING MOTIVES
DA NI=12 NO=500 MA=CM
LA
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12
KM
1.000
0.300 1.000
0.229 0.261 1.000
0.411 0.406 0.429 1.000
0.172 0.252 0.218 0.481 1.000
0.214 0.268 0.267 0.579 0.484 1.000
0.200 0.214 0.241 0.543 0.426 0.492 1.000
0.185 0.230 0.185 0.545 0.463 0.548 0.522 1.000
0.134 0.146 0.108 0.186 0.122 0.131 0.108 0.151 1.000
0.134 0.099 0.061 0.223 0.133 0.188 0.105 0.170 0.448 1.000
0.160 0.131 0.158 0.161 0.044 0.124 0.066 0.061 0.370 0.350 1.000
0.087 0.088 0.101 0.198 0.077 0.177 0.128 0.112 0.356 0.359 0.507 1.000
SD
2.06 1.52 1.92 1.41 1.73 1.77 2.49 2.27 2.68 1.75 2.57 2.66
MO NX=12 NK=3 PH=SY,FR LX=FU,FR TD=SY,FR
LK
Coping Social Enhance
PA LX
0 0 0
1 0 0
1 0 0
1 1 0   !double loading item
0 0 0
0 1 0
0 1 0
0 1 0
0 0 0
0 0 1
0 0 1
0 0 1
VA 1.0 LX(1,1) LX(5,2) LX(9,3)
PA TD
1
0 1
0 0 1
0 0 0 1
0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 1   !correlated residual
PA PH
1
1 1
1 1 1
OU ME=ML RS MI SC AD=OFF IT=100 ND=4
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substantively), the correct model can be readily obtained. As seen in Table
5.3, the fixed parameter with by far the highest modification index is λ42

(18.04), corresponding to a double-loading of item 4 with the Social
Motives factor (cf. Figure 5.1).

Second, these results demonstrate that the acceptability of the model
should not be based solely on indices of overall model fit, although this
practice is somewhat common in the literature. Note that all descriptive fit
indices were consistent with good model fit. However, these global indices
masked the fact that at least one relationship was not well represented by
the model (i.e., the double-loading of item 4).

Third, the modification index (18.04) and completely standardized
EPC values (1.00) do not correspond exactly to the actual change in model
χ2 and parameter estimate, respectively, when the relationship between
item 4 and the Social Motives factor is freely estimated. As seen in Figure
5.1, the completely standardized parameter estimate of this double-loading
is .438. This revision produces a significant improvement in model fit,
χ2

diff(1) = 16.67, p < .01 (i.e., 61.535 – 44.865 = 16.67), but the χ2 differ-
ence is slightly smaller than the modification index associated with this
parameter (18.04). Again, this underscores the fact that modification indi-
ces and EPC values are approximations of model change if a fixed or con-
strained parameter is freed.

Fourth, aspects of these results illustrate that parameter estimates
should not be interpreted when the model is poor fitting.3 For instance, it
can be seen in Table 5.3 that some of the consequences of failing to specify
the item 4 cross-loading include an inflated estimate of the factor correla-
tion between Coping Motives and Social Motives (.798), an inflated esti-
mate of the loading of item 4 on Coping Motives (.955), and underesti-
mates of the loadings of items 1–3 on Coping Motives. Because item 4 was
not specified to load on Social Motives, its moderate relationships with the
Social Motives indicators (items 5–8, rs = .48 to .58; see input correlation
matrix in Table 5.2) had to be reproduced primarily through its factor
loading with Coping Motives (λ41 = .955) and the factor correlation of
Coping and Social Motives (φ21 = .798); e.g., the model-predicted relation-
ship of X4 and X5 (completely standardized) = λ41φ21λ52 = .955(.798)(.633)
= .482 (observed r of X4 and X5 was .481; see Table 5.2). Thus, as the
result of the iterative process of minimizing FML, these parameters (λ41,
φ21) were inflated (and λ11, λ21, and λ31 were underestimated) in order to
acquire a model that best reproduced the observed relationships (S – Σ).
This also exemplifies why Heywood cases (offending estimates) may arise
from a misspecified solution—through the iterative process, the parame-
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ters may take on out-of-range values to minimize FML. In this example, a
solution with Heywood cases can be produced by fitting the Figure 5.1
model, by specifying X7 to load on Coping Motives instead of Social
Motives. Also see in Table 5.3 that the standardized residuals are not
clearly diagnostic of the source of misspecification in this instance; for
instance, these values suggest that the relationships between item 4 and
the Social Motives indicators have been reproduced adequately. This is
because the ML iterations produced parameter estimates that were able to
reproduce most relationships reasonably well. Focal areas of strains are
nonetheless evident; e.g., some relationships are overestimated (e.g., stan-
dardized residual for X3, X8 = –2.56), and one relationship is underesti-
mated (standardized residual for X1, X2 = 3.22), each relating to strains in
the model for reproducing the relationship of the Coping Motives and
Social Motives indicators. In addition to emphasizing the need to examine
multiple aspects of fit (i.e., overall fit, standardized residuals, modification
indices, parameter estimate values), this illustrates that respecifying one
parameter may successfully eliminate what seem to be multiple strains,
because all relationships in the model are interdependent.

Moreover, an indicator–factor relationship may be misspecified when
an indicator loads on the wrong factor. Table 5.4 presents selected results
of an analysis of the drinking motives model in which item 12 was speci-
fied to load on the Social Motives factor (its relationship to Enhancement
Motives was fixed to 0, but its correlated error with item 11 was freely esti-
mated). As in the prior example, overall fit statistics suggest acceptable
model fit, χ2(49) = 126.337, p < .001, SRMR = .063, RMSEA = .054 (90%
CI = 0.042 to 0.066; CFit p = .302), TLI = .954, CFI = .971, based on the
guidelines recommended by Hu and Bentler (1999). However, as shown in
Table 5.4, modification indices and standardized residuals indicate local-
ized points of strain in the solution. As before, simply freeing the fixed
parameter (λ12,3) with the largest modification index (77.01) would result
in the proper measurement model. This misspecification is evident in
other ways, such as (1) large standardized residuals indicating that the
observed relationships among the Enhancement Motives indicators (e.g.,
item 12 with items 9–11) are being underestimated by the model parame-
ter estimates; and (2) a factor loading of item 12 with Social Motives (λ12,2

= .20) that, while statistically significant (z = 4.46, not shown in Table
5.4), is well below conventional guidelines for a “salient” indicator–factor
relationship. Note that another impact of this misspecification is an ele-
vated model estimate of the correlated error of items 11 and 12 (δ12,11 = .40
vs. δ12,11 = .21 in the properly specified solution). This inflated estimate
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reflects the attempts of the iterations to reproduce the observed correlation
between items 11 and 12 (r = .507), although the model still underesti-
mates this relationship (standardized residual = 7.37). In the correct solu-
tion, the sample correlation is reproduced by the sum of the product of the
item 11 and item 12 factor loadings [λ11,3λ12,3 = .542 (.541) = .293] and the
correlated error of these indicators; that is, .293 + .214 = .507. Because the
misspecified model cannot use the product of the item 11 and item 12 fac-
tor loadings (because item 12 loads on a different factor than item 11), the
solution must rely more on the correlated error (δ12,11) to reproduce this
observed relationship. A very small portion of this relationship is also esti-
mated in the solution by λ12,2φ32λ11,3.

Unlike some previous examples, the Figure 5.1 model and the current
model are not nested. Both models entail 29 freely estimated parameters
(df = 49), and thus one does not contain a subset of the freed parameters of
the other. Therefore, the χ2

diff test cannot be used to statistically compare
these two solutions. In this scenario, a strategy that can be used to com-
pare solutions is to qualitatively evaluate each with regard to the three
major aspects of model acceptability: overall goodness of fit, focal areas of
ill fit, and interpretability/strength of parameter estimates. For instance, if
one model satisfies each of these criteria and the other does not, the for-
mer model would be favored.

In addition, methodologists have developed procedures for using χ2

in the comparison of non-nested models. Two popular methods are the
Akaike Information Criterion (AIC; Akaike, 1987) and the Expected
Cross-Validation Index (ECVI; Browne & Cudeck, 1989). These indices
are closely related in that they both take into account model fit (as
reflected by χ2) and model complexity/parsimony (as reflected by model df
or the number of freely estimated parameters; cf. the RMSEA). The ECVI
also incorporates sample size—specifically, a greater penalty function for
fitting a nonparsimonious model in a smaller sample.

Latent variable software programs differ in their computation of the
AIC. For instance, in EQS, the AIC is computed as follows:

AIC = χ2 – 2df (5.1)

Thus, for the Figure 5.1 model, AIC would be –53.13 (i.e., 44.8654 – 98).
In LISREL and Amos, AIC is computed as

AIC = χ2 + 2a (5.2)
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where a is the number of freely estimated parameters in the model (in
Figure 5.1, a = 29). Using this equation, AIC would equal 102.87
(44.87 + 58). Mplus output presents the AIC as

AIC = –2(loglikelihood) + 2a (5.3)

For a demonstration of the equivalence of these three equations, see
Kaplan (2000).

Although Mplus and EQS do not provide the ECVI (the ECVI is cal-
culated in LISREL and Amos), its approximation is straightforward:

ECVI = (χ2/n) + 2(a/n) (5.4)

where n = N – 1 and a is the number of freely estimated parameters in the
model. Thus, the ECVI for the Figure 5.1 solution is .21; that is, (44.8654/
499) + 2(29/499) = .09 + .12 = .21. For the current misspecified model
involving the item 12 loading, AIC and ECVI are 184.34 and .37, respec-
tively (AIC calculated using Eq. 5.2).

Whereas the AIC and ECVI can be used in tandem with χ2
diff for the

comparison of nested solutions, these indices are more often considered in
the evaluation of competing, non-nested models. Generally, models with
the lowest AIC and ECVI values are judged to fit the data better in relation
to alternative solutions (regardless of the method by which AIC is calcu-
lated). From this standpoint, the Figure 5.1 solution would be favored
over the current model because it is associated with lower AIC and ECVI
values (although in the present case, this could be determined simply by
comparing model χ2s because the two solutions do not differ in df). It
must be emphasized that, unlike χ2

diff, the AIC and ECVI do not provide a
statistical comparison of competing models. Rather, these indices foster
the comparison of the overall fit of models, adjusting for the complexity of
each.4

Another possible problematic outcome of a CFA solution is that an
indicator does not load on any latent factor. This problem is readily diag-
nosed by results showing that the indicator has a nonsignificant or
nonsalient loading on the conjectured factor, as well as modification indi-
ces (and EPC values) suggesting that the fit of the model could not be
improved by allowing the indicator to load on a different factor. This con-
clusion should be further supported by inspection of standardized residu-
als (2.00) and sample correlations that point to the fact that the indicator
is weakly related to other indicators in the model. Unlike the prior exam-
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ples, this scenario does not substantially degrade the fit of the model
(assuming that the model is well specified otherwise). Thus, although the
proper remedial action is to eliminate the problematic indicator, the over-
all fit of the model will usually not improve. In addition, the revised
model is not nested with the initial solution because the input variance–
covariance matrix has changed.

Although most of this section has described various ways a model
might be respecified retaining the original set of indicators, it is often the
case that a much better fitting solution can be obtained by simply drop-
ping bad indicators from the model. For example, an indicator may be
associated with several large modification indices and standardized residu-
als, reflecting that the indicator is rather nonspecific in that it evidences
similar relationships to all latent variables in the solution. Simply dropping
this indicator from the model will eliminate multiple strains in the solu-
tion.

Correlated Errors

A CFA solution can also be misspecified with respect to the relationships
among the indicator error variances. When no correlated errors (error
covariances) are specified, the researcher is asserting that all of the
covariation among indicators that load on a given factor is due to that
latent dimension and that all measurement error is random. Correlated
errors between indicators are specified on the basis of the notion that some
of the covariance in the indicators not explained by the latent variable is
due to another exogenous common cause; that is, some of the shared vari-
ance is due to the latent factor, some of the shared variance is due to an
outside cause. It is also possible that correlated errors exist for indicators
that load on separate latent factors. In this case, most of the shared vari-
ance may be due to an outside cause (some of the observed covariation
may also be reproduced by the product of the indicators’ factor loadings
and the factor correlation). Occasionally, variables measured by single
indicators are included in a CFA model (see Chapters 4 and 7). Because
such models would be underidentified, it is not possible to correlate the
measurement errors of single indicators with the errors of other indicators
in the solution.

As discussed earlier in this chapter, in the case of the analysis of mul-
tiple questionnaire items, correlated errors may arise from items that are
very similarly worded, reverse-worded, or differentially prone to social
desirability, and so forth. In CFA construct validation studies, correlated
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errors may be needed to account for method covariance, such as in the
analysis of indicators collected from different assessment modalities (e.g.,
self-report, behavioral observation, interview rating; cf. the multitrait–
multimethod approach, Chapter 6).

Unnecessary correlated errors can be readily detected by results indi-
cating their statistical or clinical nonsignificance (e.g., z values below 1.96,
or very small parameter estimates that reflect trivial shared variance of the
errors). The next step is simply to refit the model by fixing these
covariances to zero and verify that this respecification does not result in a
significant decrease in model fit. The χ2

diff test can be used in this situation
(but see below). The more common difficulty is the failure to include
salient correlated errors in the solution. As in the prior examples, the
omission of these parameters is typically manifested by large standardized
residuals, modification indices, and EPC values.

Table 5.5 presents selected results of the drinking motives CFA solu-
tion where the correlated error between items 11 and 12 has not been
specified (all other aspects of the solution were properly specified).
Although the overall fit of the model is good, for example, χ2(50) = 69.30,
p = .037, CFI = .99, RMSEA = .029, SRMR = .031, standardized residuals
(5.10) and modification indices (δ12,11 = 26.02) indicate that the relation-
ship between these items has not been adequately reproduced by the
model’s parameter estimates. The need for a correlated error for these
items is further evidenced by a rather large completely standardized
expected change value (δ12,11 = .25). Because this correlated error can be
defended substantively (i.e., item 11 and item 12 are the only reverse-
worded items in this questionnaire), this parameter is freed in the re-
specified solution. This modification significantly improves model fit,
χ2

diff(1) = 24.43, p < .001, and the completely standardized estimate of this
correlated error is .214 (see Figure 5.1).

As can be seen in Table 5.5, consequences of this misspecification
include higher factor loadings for items 11 and 12, and lower loadings for
items 9 and 10, on the Enhancement Motives factor. The factor loadings of
items 11 and 12 were inflated in the iterative process because a consider-
able portion of the observed correlation between these indicators could
not be reproduced by the correlated error; for example, λx11,3 = .665 versus
.542 in the Table 5.5 and Figure 5.1 solutions, respectively. However, in
attempt to avoid marked overestimation of the relationships between items
9 and 10 with items 11 and 12, the magnitude of the item 9 and item 10
factor loadings is attenuated; for example, λx10,3 = .595 versus .664 in the
Table 5.5 and Figure 5.1 solutions, respectively. In other words, because
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the factor loadings for items 11 and 12 had to be increased to better
approximate the observed relationship of these indicators, the factor load-
ings of items 9 and 10 were lowered in the iterations to better approximate
the relationships of item 9 with items 11 and 12, and item 10 with items
11 and 12. However, these relationships were still overestimated by the
parameter estimates (e.g., standardized residual for items 10 and 11 =
–2.76, Table 5.5), and the reduction in the magnitude of the item 9 and
item 10 factor loadings resulted in a model underestimate of the observed
relationship of these indicators (i.e., standardized residual for items 9 and
10 = 4.48, Table 5.5). This again illustrates how correcting one
misspecified parameter (δ12,11) may resolve several strains in the solution.

Because of the large sample sizes typically involved in CFA, the
researcher will often encounter “borderline” modification indices (e.g.,
larger than 3.84, but not of particularly strong magnitude) that suggest
that the fit of the model could be improved if correlated errors were added
to the model. As with any type of parameter specification in CFA, corre-
lated errors must be supported by a substantive rationale and should not
be freely estimated simply to improve model fit. In addition, the magni-
tude of EPC values should also contribute to the decision about whether
to free these parameters. As discussed in Chapter 4, the researcher should
resist any temptation to use borderline modification indices to overfit the
model. These trivial additional estimates usually have minimal impact on
the key parameters of the CFA solution (e.g., factor loadings) and are apt
to be highly unstable (i.e., reflect sampling error rather than an important
relationship; cf. MacCallum, 1986).

It is also important to be consistent in the decision rules used to spec-
ify correlated errors; that is, if there is a plausible reason for correlating the
errors of two indicators, then all pairs of indicators for which this reason-
ing applies should also be specified with correlated errors. For instance, if
it is believed that method effects exist for questionnaire items that are
reverse worded (e.g., Marsh, 1996), correlated errors should be freely esti-
mated for all such indicators, not just a subset of them. Similarly, if the
errors of indicators X1 and X2 and indicators X2 and X3 are correlated for
the same reason, then the errors of X1 and X3 should also be estimated.
Earlier in this chapter where the one- versus two-factor solution of Neu-
roticism and Extraversion was considered, it was shown that the pattern-
ing of standardized residuals and δ modification indices may suggest the
existence of a distinct factor (see Table 5.1). However, in some situations,
such as in the analysis of questionnaires with reverse-worded items (e.g.,
Brown, 2003; Marsh, 1996), this patterning may not reflect important
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latent dimensions but rather the impact of substantively irrelevant method
effects. Theoretical considerations must strongly be brought to bear in this
determination, as this decision may have far-reaching implications for the
future measurement and conceptualization of the construct.

Improper Solutions and Nonpositive Definite Matrices

A measurement model should not be deemed acceptable if the solution
contains one or more parameter estimates that have out-of-range values.
As noted earlier, such estimates are usually referred to as Heywood cases or
offending estimates. The most common type of Heywood case in a CFA
model is a negative error variance. Moreover, a completely standardized
factor loading with a value greater than 1.0 is problematic if the CFA con-
sists of congeneric indicator sets (i.e., each indicator loads on one factor
only). In CFA models with indicators that load on more than one factor
(and the factors are specified to be intercorrelated), the factor loadings of
such indicators are regression coefficients, not correlations between the
indicators and the factors. A completely standardized factor loading above
1.0 may be admissible in such models, although this result might be indic-
ative of multicollinearity in the sample data (see below). This section dis-
cusses the various sources of improper solutions and their remedies.

A necessary condition for obtaining a proper CFA solution is
that both the input variance–covariance matrix and the model-implied
variance–covariance matrix are positive definite. Appendix 3.3 (Chapter 3)
introduced the concept of positive definiteness in context of the calcula-
tion of determinants and FML. As noted in Appendix 3.3, a determinant is a
single number (scalar) that conveys the amount of nonredundant variance
in a matrix (i.e., the extent to which variables in the matrix are free to
vary). When a determinant equals 0, the matrix is said to be singular,
meaning that one or more rows or columns in the matrix are linearly de-
pendent on other rows and columns. An example of a singular matrix is
one comprised of three test scores: Subscale A, Subscale B, and Total Score
(sum of Subscale A and Subscale B). The resulting matrix is singular
because the third variable (Total Score) is redundant; that is, it is linearly
dependent on the other two variables and thus has no freedom to vary. A
singular matrix is problematic because it has no inverse. Consequently,
multivariate statistics that require the inverse of a matrix cannot be com-
puted (e.g., FML; cf. Appendix 3.3). Singularity is one reason why a matrix
will not be positive definite. For the condition of positive definiteness to
hold, the input and model-implied matrices and every principal submatrix
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of these matrices must have determinants greater than zero (“principal
submatrices” are all possible subsets of the original matrix created by
removing variables from the original matrix).5

The condition of positive definiteness can be evaluated by submitting
the variance–covariance matrix in question to principal components anal-
ysis (PCA; see Chapter 2). PCA will produce as many eigenvalues as the
number of variables (p) in the input matrix. If all eigenvalues are greater
than zero, the matrix is positive definite. If one or more eigenvalues are
less than zero, the matrix is indefinite. The term semidefinite is used in ref-
erence to matrices that produce at least one eigenvalue that equals zero,
but no negative eigenvalues (Wothke, 1993).

There are several potential causes of a nonpositive definite input
variance–covariance matrix. As noted above, this problem may stem from
high multicollinearities or linear dependencies in the sample data. This
problem is usually addressed by eliminating collinear variables from the
input matrix or combining them (cf. parceling, Chapter 9). Often, a
nonpositive definite input matrix is due to a minor data entry problem,
such as typographical errors in preparing the input matrix (e.g., a negative
or zero sample variance, a correlation > 1.0) or errors in reading the data
into the analysis (e.g., formatting errors in the syntax file). Large amounts
of missing data, in tandem with use of an inferior approach to missing data
management, can create a nonpositive definite input matrix. In Chapter 9,
it is demonstrated that the range of possible values that a correlation (or
covariance) may possess is dependent on all other relationships in the
input matrix. For example, if rx,z = .80 and ry,z = .80, then rx,y must not be
below .28 (see Eq. 9.1, Chapter 9) or this submatrix would not be positive
definite. Input matrices created from complete data of a large sample are
usually positive definite. However, pairwise deletion of missing data can
cause definiteness problems (out-of-bound correlations) because the input
matrix is computed on different subsets of the sample. Listwise deletion
can produce a nonpositive definite matrix by decreasing sample size (see
below) or other problems (e.g., creating constants in the sample data that
have zero variance). Here, the best solution would be to use a state-of-the-
art approach to missing data (i.e., direct ML, multiple imputation; see
Chapter 9).

There are several other problems that may lead to improper solutions
(i.e., nonpositive definite model matrices, Heywood cases). Perhaps the
most common cause is a misspecified model: improper solutions fre-
quently occur when the specified model is very different from models that
the data would support. Structurally and empirically underidentified mod-
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els will also lead to nonconverging or improper solutions (e.g., see Figure
3.7, Chapter 3; “Model Identification Revisited” section of this chapter). In
these situations, it is often possible to revise the model using the fit diag-
nostic procedures described in this chapter. If the model is grossly
misspecified, the researcher may need to move back into a purely explor-
atory analytic framework (i.e., EFA) to revamp the measurement model.6

Bad starting values can be the root of improper solutions (see Chapter 3).
However, with the possible exception of very complex models, starting
values are rarely the cause of improper solutions in today’s latent variable
software programs, which have become very sophisticated in the auto-
matic generation of such numbers.

Problems often arise with the use of small samples. For instance, an
input matrix may not be positive definite owing to sampling error. Small
samples often work in concert with other problems to create model esti-
mation difficulties. For instance, small samples are more prone to the
influence of outliers (i.e., cases with aberrant values on one or more vari-
ables). Outliers can cause collinearities and non-normality in the sample
data and can lead to Heywood cases such as negative variance estimates
(e.g., an indicator error less than zero). Moreover, some non-normal the-
ory estimators (e.g., weighted least squares) perform very poorly with
small or moderate-size samples because their associated weight matrices
cannot be inverted (see Chapter 9). Anderson and Gerbing (1984) re-
ported how sample size may interact with other aspects of a model to affect
the risk for improper solutions. Specifically, these authors found that the
risk of negative variance estimates is highest in small samples when there
are only two or three indicators per latent variable and when the com-
munalities of the indicators are low (see also Chen, Bollen, Paxton,
Curran, & Kirby, 2001). As discussed in Chapter 10, each of these aspects
also contributes to statistical power. In addition to reducing the risk of
empirical underidentification, having multiple indicators per factor also
decreases the likelihood of improper solutions. If an improper solution is
caused by these issues, additional cases or data must be obtained; for
example, collect a larger sample, or obtain a larger set of indicators with
stronger relationships to the latent variables.

An estimator appropriate to the sample data must be used. For exam-
ple, if the indicators are binary (e.g., Yes/No items), it would be inappro-
priate to conduct the CFA on a matrix of Pearson correlations or co-
variances using the ML estimator. This analysis would provide incorrect
results. The proper procedures for conducting CFA with non-normal and
categorical data are presented in Chapter 9.
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In addition, the risk of nonconvergence and improper solutions is
positively related to model complexity (i.e., models that have a large num-
ber of freely estimated parameters). A good example of an overpara-
meterized model is the correlated methods CFA of multitrait–multimethod
data (see Figure 6.1, Chapter 6). As discussed in Chapter 6, these models
produce improper solutions most of the time. In other types of models, it
may be possible to rectify the inadmissibility problem by removing some
freely estimated parameters (e.g., if substantively justified, drop non-
significant parameters or place other restrictions on the model, such as
equality constraints; see Chapter 7). However, the estimation problems
associated with model complexity are magnified by small sample size.

Some examples of nonpositive definite matrices and improper solu-
tions are presented in Figure 5.2. In Model A, the input matrix is
semidefinite because of a linear dependency in the sample data (i.e., Y1 is
the sum of the other indicators). The fact that this matrix is not positive
definite is upheld by the results of a PCA, which shows that one
eigenvalue equals zero. Model B analyzes an indefinite input matrix; that
is, one of its associated eigenvalues is negative. In this example, the corre-
lation of Y1–Y2 cannot be –.20, given the relationships of Y1 and Y2 with
other indicators in the sample data. This problem may have been produced
by a data entry error or the use of pairwise deletion as the missing data
strategy. Depending on the latent variable software program, Models A and
B either will not be executed (i.e., the program will issue the warning that
the matrix is not positive definite and will stop) or will produce a factor
loading above 1.0 and a negative indicator error variance.

In Model C, the input matrix is positive definite: PCA indicates that
all eigenvalues are positive. However, the two-factor measurement model
is misspecified. The proposed model will not support the pattern of rela-
tionships in the sample data; for instance, Y1 and Y2 are specified as indi-
cators of η1, yet Y1 is much more strongly related to Y3 than Y2. In an
effort to reproduce the sample relationships, given the model that is speci-
fied, the ML estimation process is “forced to push” one or more parameter
estimates out of the range of admissibility. In this case, ML estimation pro-
duces an indefinite factor correlation matrix; that is, the correlation of η1

and η2 is estimated to be 1.368. When the model is properly specified
(Model D), the results indicate a good-fitting model, for example, χ2 (1, N
= 500) = 2.78, p = .096, and reasonable parameter estimates; for example,
factor correlation = .610, range of factor loadings = 0.778–0.867.

In practice, the problem of improper solutions is often circumvented
by a “quick fix” method. For example, a negative indicator error variance
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Model A: Semidefinite Input Matrix
(Linear dependency: Y1 is the sum of Y2, Y3, and Y4)

Input Matrix Eigenvalues

Y1 Y2 Y3 Y4
Y1 1.0000 2.877
Y2 0.8035 1.0000 0.689
Y3 0.6303 0.4379 1.0000 0.435
Y4 0.8993 0.5572 0.3395 1.0000 0.000

Consequence: factor loading > 1.0, negative error variance

Model B: Indefinite Input Matrix
(Correlation of Y1–Y2 is out of possible range given other relationships)

Input Matrix Eigenvalues

Y1 Y2 Y3 Y4
Y1 1.0000 2.432
Y2 -0.2000 1.0000 1.209
Y3 0.7000 0.7000 1.0000 0.513
Y4 0.4500 0.6000 0.5000 1.0000 -0.155

Consequence: factor loading > 1.0, negative error variance

(cont.)

FIGURE 5.2. Examples of nonpositive definite matrices and improper solutions.
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Model C: Positive Definite Input Matrix, Indefinite Model-Implied Matrix
(Specification problem: incorrect specification of indicator–factor relationships)

Input Matrix Eigenvalues

Y1 Y2 Y3 Y4
Y1 1.0000 2.501
Y2 0.4000 1.0000 0.851
Y3 0.7000 0.4000 1.0000 0.360
Y4 0.4500 0.6500 0.4000 1.0000 0.289

Consequence: Factor correlation > 1.0

Model D: Positive Definite Input and Model-Implied Matrices
(Correctly specified model)

Input Matrix Eigenvalues

Y1 Y2 Y3 Y4
Y1 1.0000 2.501
Y2 0.4000 1.0000 0.851
Y3 0.7000 0.4000 1.0000 0.360
Y4 0.4500 0.6500 0.4000 1.0000 0.289

Consequence: Good-fitting model, χ2 (1, N = 500) = 2.78, reasonable
parameter estimates

FIGURE 5.2. (cont.)



might be addressed by respecifying the model with additional constraints
(e.g., fixing the error variance to zero or a small positive value). Although
overall fit will worsen somewhat, a proper solution may be obtained.7 In
fact, a default in the EQS program prevents negative variances by setting
the lower bound of these estimates to zero. When the LISREL program
encounters an indefinite or semidefinite matrix, it invokes a ridge option—
a smoothing function to eliminate negative or zero eigenvalues—to make
the input data suitable for the analysis. These remedial strategies are not
recommended. As noted in this section, a negative indicator error variance
may be due to a variety of problems, such as sampling fluctuation (small
sample size), non-normality (e.g., outliers), multicollinearity, and model
misspecification. In addition to causing the Heywood case, these issues
signal other problems with the analysis and the sample data (e.g., low sta-
tistical power, poorly screened data, redundant indicators). Thus, it is
better to diagnose and correct the true source of the problem rather than
sidestep it with one of these quick fix remedies.

EFA IN THE CFA FRAMEWORK

A common sequence in scale development and construct validation is to
conduct CFA as the next step after latent structure has been explored
using EFA. However, the researcher frequently encounters a poor-fitting
CFA solution because of the potential sources of misfit that are not present
in EFA. For example, unlike the situation in EFA, indicator cross-loadings
and residual covariances are usually fixed to zero in initial CFA models.
The researcher is then faced with potentially extensive post hoc model
testing subject to the criticisms of specification searches in a single data set
(MacCallum, 1986).

Although underutilized in the applied literature, the procedure of
“exploratory factor analysis within the CFA framework” (E/CFA; Jöreskog,
1969; Jöreskog & Sörbom, 1979; Muthén & Muthén, 1998) can be a use-
ful precursor to CFA that allows the researcher to explore measurement
structures more fully before moving into a confirmatory framework. The
E/CFA approach represents an intermediate step between EFA and CFA
that provides substantial information important in the development of
realistic confirmatory solutions. In this strategy, the CFA applies the same
number of identifying restrictions used in EFA (m2) by fixing factor vari-
ances to unity, freely estimating the factor covariances, and by selecting an
anchor item for each factor whose cross-loadings are fixed to zero (the
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loadings of nonanchor items are freely estimated on each factor). Whereas
this specification produces the same model fit as maximum likelihood
EFA, the CFA estimation provides considerably more information, includ-
ing the statistical significance of cross-loadings and the potential presence
of salient error covariances. Thus, the researcher can develop a realistic
measurement structure prior to moving into the more restrictive CFA
framework (for applied examples of this approach, see Brown, White, &
Barlow, 2005; Brown, White, Forsyth, & Barlow, 2004; Campbell-Sills,
Liverant, & Brown, 2004). In addition, E/CFA can be used to bring other
variables (i.e., predictors or distal outcomes of the factors) into an EFA-
type solution, eliminating the need for factor scores (see Chapters 2 and 3
for an overview of the limitations of factor scores).

To illustrate this strategy, the data from the drinking motives ques-
tionnaire are again used. However, in this example, suppose that the psy-
chometric development of this measure is in the early stages and the
researcher has only a sense of the correct number of common factors and
the hypothesized pattern of item–factor relationships based on theory-
driven item development and preliminary exploratory research (which
may have led to the elimination of some poorly behaved items). As the
next exploratory step, the researcher conducts an EFA in a larger sample
(i.e., the current sample with an N = 500) with the intent of verifying that
a three-factor solution provides acceptable fit, and that the primary load-
ings of the items are generally in accord with prediction (e.g., items 1
through 4 have their highest loadings on the latent dimension of Coping
Motives). At this stage of psychometric evaluation, use of CFA is prema-
ture. Although the researcher has a firm conceptual sense of this measure
(i.e., number of factors, conjectured pattern of item–factor relationships,
as supported by preliminary research), the initial EFA findings are limited
in their ability to fully guide the CFA specification (e.g., reasonability of
fixing all cross-loadings and error covariances to zero).

Table 5.6 presents Mplus syntax and selected results of an EFA using
the N = 500 sample. As can be seen in this table, the three-factor EFA solu-
tion provided a good fit to the data, χ2(33) = 55.546, p = .008, RMSEA =
.037 (90% CI = .019 to .053, CFit = .898). Although these results support
the viability of a three-factor model, the researcher wishes to further
explore the latent structure of this measure before specifying a CFA solu-
tion in an independent sample.

Table 5.7 provides the syntax from several programs (LISREL, Mplus,
EQS, CALIS, Amos) for specifying an E/CFA in the N = 500 data set. The
programs appear very similar to the CFAs presented in earlier examples
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TABLE 5.6. Mplus Syntax and Selected Results for an Exploratory Factor Analysis
of a Drinking Motives Questionnaire

TITLE:  DRINKING MOTIVES EFA
DATA:
FILE IS “C:\efa.sav”; ! the correlation matrix in Table 5.2 could be

VARIABLE:               ! used as input here
NAMES ARE X1-X12 GP;
USEV ARE X1-X12;

ANALYSIS:
TYPE IS EFA 3 3;
ESTIMATOR IS ML;
ITERATIONS = 1000;
CONVERGENCE = 0.00005;

OUTPUT: SAMPSTAT;

EIGENVALUES FOR SAMPLE CORRELATION MATRIX
1 2 3 4 5

1 3.876 1.906 1.150 0.837 0.722

6 7 8 9 10

1 0.669 0.576 0.557 0.487 0.471

11 12

1 0.426 0.323

EXPLORATORY ANALYSIS WITH  3 FACTOR(S) :
CHI-SQUARE VALUE              55.546
DEGREES OF FREEDOM                33
PROBABILITY VALUE             0.0083
RMSEA (ROOT MEAN SQUARE ERROR OF APPROXIMATION) :
ESTIMATE (90 PERCENT C.I.) IS 0.037 ( 0.019 0.053)
PROBABILITY RMSEA LE 0.05 IS    0.898

PROMAX ROTATED LOADINGS
1 2 3

X1 0.573 -0.037 0.031 *to be used as anchor item
X2 0.502 0.065 0.000

X3 0.475 0.071 0.009

X4 0.514 0.494 0.006

X5 0.095 0.590 -0.039

X6 0.107 0.671 0.041
X7 0.103 0.641 -0.034

X8 -0.011 0.759 -0.001 *to be used as anchor item
X9 -0.003 0.043 0.575

X10 -0.044 0.107 0.567

X11 0.108 -0.134 0.689

X12 -0.041 0.031 0.679 *to be used as anchor item
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TABLE 5.7. Syntax for Conducting an EFA within the CFA Framework
for the Drinking Motives Questionnaire

LISREL 8.72

TITLE E/CFA OF DRINKING MOTIVES ITEMS
DA NI=13 NO=500 MA=CM
LA
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 GP
RA FI = C:\EFA.SAV
SE
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 /
MO NX=12 NK=3 PH=SY,FR LX=FU,FR TD=DI
LK
COPING SOCIAL ENHANCE
PA LX
1 0 0                        ! ITEM 1 IS AN ANCHOR ITEM FOR COPING
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
0 1 0                        ! ITEM 8 IS AN ANCHOR ITEM FOR SOCIAL
1 1 1
1 1 1
1 1 1
0 0 1                        ! ITEM 12 IS AN ANCHOR ITEM FOR ENHANCE
PA PH
0
1 0
1 1 0                            ! FACTOR COVARIANCES FREELY ESTIMATED
VA 1.0 PH(1,1) PH(2,2) PH(3,3)   ! FACTOR VARIANCES FIXED TO 1.0
OU ME=ML RS MI SC ND=4

Mplus 3.11

TITLE:  DRINKING MOTIVES ECFA
DATA:
FILE IS “C:\efa.sav”;

VARIABLE:
NAMES ARE X1-X12 GP;
USEV ARE X1-X12;

ANALYSIS: ESTIMATOR IS ML;
ITERATIONS=1000;

MODEL:
COPING BY  X1-X12*.5 X8@0 X12@0;  !X1 is ANCHOR ITEM
SOCIAL BY  X1-X12*.5 X1@0 X12@0;  !X8 is ANCHOR ITEM
ENHANCE BY X1-X12*.5 X1@0 X8@0;   !X12 is ANCHOR ITEM
COPING-ENHANCE@1;                 !FACTOR VARIANCES FIXED TO 1.0

OUTPUT:  STANDARDIZED MODINDICES(10.00) SAMPSTAT;

(cont.)
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TABLE 5.7. (cont.)

EQS 5.7b

/TITLE
E/CFA OF DRINKING MOTIVES ITEMS

/SPECIFICATIONS
CASES=500; VAR=13; ME=ML; MA=RAW;
DA = ‘C:\EFA.SAV’;

/LABELS
v1=item1; v2= item2; v3= item3; v4= item4; v5= item5; v6= item6;
v7= item7; v8= item8; v9= item9; v10=item10; v11=item11; v12=item12;
v13=gp; f1 = coping; f2 = social; f3 = enhance;

/EQUATIONS
V1 =  *F1+E1;           ! ITEM 1 IS ANCHOR ITEM FOR COPING
V2 =  *F1+*F2+*F3+E2;
V3 =  *F1+*F2+*F3+E3;
V4 =  *F1+*F2+*F3+E4;
V5 =  *F1+*F2+*F3+E5;
V6 =  *F1+*F2+*F3+E6;
V7 =  *F1+*F2+*F3+E7;
V8 =  *F2+E8;           ! ITEM 8 IS ANCHOR ITEM FOR SOCIAL
V9 =  *F1+*F2+*F3+E9;
V10 = *F1+*F2+*F3+E10;
V11 = *F1+*F2+*F3+E11;
V12 = *F3+E12;          ! ITEM 12 IS ANCHOR ITEM FOR ENHANCE

/VARIANCES
F1 TO F3 = 1.0;         ! FACTOR VARIANCES FIXED TO 1.0
E1 TO E12 = *;

/COVARIANCES
F1 TO F3 = *;           ! FACTOR COVARIANCES FREELY ESTIMATED

/PRINT
fit=all;

/LMTEST
/END

SAS PROC CALIS 8.2

proc calis data=EFADATA cov method=ml pall pcoves;
var = X1-X12;
lineqs
X1 =  lm11 f1 + e1,
X2 =  lm21 f1 + lm22 f2 + lm23 f3 + e2,
X3 =  lm31 f1 + lm32 f2 + lm33 f3 + e3,
X4 =  lm41 f1 + lm42 f2 + lm43 f3 + e4,
X5 =  lm51 f1 + lm52 f2 + lm53 f3 + e5,
X6 =  lm61 f1 + lm62 f2 + lm63 f3 + e6,
X7 =  lm71 f1 + lm72 f2 + lm73 f3 + e7,
X8 =  lm82 f2 + e8,
X9 =  lm91 f1 + lm92 f2 + lm93 f3 + e9,
X10 = lm101 f1 + lm102 f2 + lm103 f3 + e10,
X11 = lm111 f1 + lm112 f2 + lm113 f3 + e11,
X12 = lm123 f3 + e12; (cont.)



198 CONFIRMATORY FACTOR ANALYSIS FOR APPLIED RESEARCH

TABLE 5.7. (cont.)

std
f1-f3 = 1.0,
e1-e12 = td1-td12;

cov
f1-f3 = ph21 ph31 ph32;

run;

Amos Basic 5

‘ Example of E/CFA in Amos 5.0
Sub Main ()
Dim sem As New AmosEngine
sem.TextOutput
sem.Standardized
sem.Smc

sem.BeginGroup “ecfa.txt”

sem.Structure “x1 =   COPING + (1) E1"                  ‘ X1 IS ANCHOR
sem.Structure “x2 =   COPING + SOCIAL + ENHANCE + (1) E2"
sem.Structure “x3 =   COPING + SOCIAL + ENHANCE + (1) E3"
sem.Structure “x4 =   COPING + SOCIAL + ENHANCE + (1) E4"
sem.Structure “x5 =   COPING + SOCIAL + ENHANCE + (1) E5"
sem.Structure “x6 =   COPING + SOCIAL + ENHANCE + (1) E6"
sem.Structure “x7 =   COPING + SOCIAL + ENHANCE + (1) E7"
sem.Structure “x8 =   SOCIAL + (1) E8"                  ‘ X8 IS ANCHOR
sem.Structure “x9 =   COPING + SOCIAL + ENHANCE + (1) E9"
sem.Structure “x10 =  COPING + SOCIAL + ENHANCE + (1) E10"
sem.Structure “x11 =  COPING + SOCIAL + ENHANCE + (1) E11"
sem.Structure “x12 =  ENHANCE + (1) E12"               ‘ X12 IS ANCHOR
sem.Structure “COPING (1)”
sem.Structure “SOCIAL (1)”
sem.Structure “ENHANCE (1)”
sem.Structure “COPING <—> SOCIAL”
sem.Structure “COPING <—> ENHANCE”
sem.Structure “SOCIAL <—> ENHANCE”

End Sub

Note. N = 500.



(e.g., see Table 4.1, Chapter 4), except for two major differences: (1) all
factor loadings and cross-loadings are freely estimated, with the exception
of the cross-loadings of the items selected as anchor indicators (X1, X6,
X8); and (2) as in EFA, the metric of the latent factors is specified by fixing
the factor variances to 1.0 (but the three-factor correlations are freely esti-
mated). Note that items 1 (X1), 6 (X6), and 8 (X8) were selected as anchor
indicators for Coping Motives, Social Motives, and Enhancement Motives,
respectively. Anchor items are selected on the basis of EFA results (Table
5.6) and entail one item from each factor that has a high (or the highest)
primary loading on the factor and low (or the lowest) cross-loadings on
the remaining factors. For example, item 8 (X8) was chosen as the anchor
indicator for Social Motives because it had the highest loading on this fac-
tor (.759) and the lowest cross-loadings on Coping Motives and Enhance-
ment Motives (.011 and .001, respectively; see Table 5.6).

Selected Mplus output of the E/CFA is provided in Table 5.8. First,
note that although this analysis was conducted in the CFA framework,
the degrees of freedom and overall fit are the same as in the EFA solu-
tion presented in Table 5.6; χ2(33) = 55.546, p = .008, RMSEA = .037
(90% CI = .019 to .053, CFit = .898). Nonetheless, this analysis provides
considerably more information than the EFA. The E/CFA provides z tests
(labeled under the “Est./S.E.” column in Mplus) to determine the statis-
tical significance of primary and secondary loadings (except for the
cross-loadings of the three anchor items).8 For example, items 5 through
8 (X5–X8) have statistically significant (ps < .001) loadings on Social
Motives (range of zs = 10.44 to 17.22), but none of these items have sta-
tistically significant cross-loadings on Coping Motives or Enhancement
Motives (range of zs = 0.67 to 1.69). Conversely, whereas items 1
through 4 have statistically significant (ps < .001) loadings on Coping
Motives, the E/CFA results indicated that item 4 also has a large (λ42 =
.546) and statistically significant (z = 8.21, p < .001) loading on Social
Motives. This suggests that a CFA model of congeneric indicator sets
may not be viable; that is, item 4 should be specified to load on both
Coping Motives and Social Motives, although its loading on Enhance-
ment Motives could be fixed to zero (i.e., z = 0.35, Table 5.8). Other
than item 4, the E/CFA results are generally supportive of fixing all other
cross-loadings at zero in a subsequent CFA model. In addition, unlike
the EFA, the E/CFA provides significance tests of the factor covariances;
as seen in Table 5.8, the three drinking motives factors are significantly
interrelated (range of zs = 2.99 to 3.98).
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TABLE 5.8. Selected Mplus Output of the E/CFA of the Drinking Motives
Questionnaire Items

TESTS OF MODEL FIT

Chi-Square Test of Model Fit

Value                             55.546
Degrees of Freedom                    33
P-Value                           0.0083

CFI/TLI

CFI                                0.986
TLI                                0.972

RMSEA (Root Mean Square Error Of Approximation)

Estimate                           0.037
90 Percent C.I.                    0.019  0.053
Probability RMSEA <=.05            0.898

SRMR (Standardized Root Mean Square Residual)

Value                              0.023

MODEL RESULTS

Estimates     S.E.  Est./S.E.    Std     StdYX

COPING   BY
X1                 0.613    0.060     10.274    0.613    0.567
X2                 0.514    0.075      6.888    0.514    0.497
X3                 0.487    0.074      6.598    0.487    0.471
X4                 0.536    0.068      7.873    0.536    0.515
X5                 0.097    0.068      1.427    0.097    0.100
X6                 0.114    0.067      1.691    0.114    0.117
X7                 0.110    0.071      1.556    0.110    0.109
X8                 0.000    0.000      0.000    0.000    0.000
X9                 0.032    0.075      0.431    0.032    0.031
X10               -0.008    0.076     -0.112   -0.008   -0.008
X11                0.150    0.076      1.957    0.150    0.146
X12                0.000    0.000      0.000    0.000    0.000

SOCIAL   BY
X1                 0.000    0.000      0.000    0.000    0.000
X2                 0.101    0.076      1.338    0.101    0.098
X3                 0.105    0.074      1.413    0.105    0.102
X4                 0.546    0.067      8.209    0.546    0.525
X5                 0.574    0.055     10.441    0.574    0.594
X6                 0.651    0.053     12.252    0.651    0.672
X7                 0.649    0.056     11.492    0.649    0.645
X8                 0.791    0.046     17.225    0.791    0.753
X9                 0.020    0.065      0.310    0.020    0.020

(cont.)



Although EFA may also furnish evidence of the presence of double-
loading items (see promax rotated loadings of item 4 in Table 5.6), EFA
does not provide any direct indications of the potential existence of salient
correlated errors (as noted in Chapters 2 and 3, EFA identification restric-
tions prevent the specification of correlated indicator errors). This is
another area where the results of E/CFA can be quite valuable. Because the
analysis is conducted within the CFA framework, modification indices and
other fit diagnostic information (e.g., standardized residuals) are available
to examine whether the observed correlations among indicators can be
adequately reproduced by the latent factors alone. Modification indices are
provided only for the measurement error portion of the model (e.g., the
theta-delta matrix in LISREL) because all other portions of the solution are
saturated (e.g., factor loadings and cross-loadings).
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TABLE 5.8. (cont.)

X10                0.083    0.065      1.282    0.083    0.081
X11               -0.158    0.069     -2.305   -0.158   -0.154
X12                0.000    0.000      0.000    0.000    0.000

ENHANCE  BY
X1                 0.000    0.000      0.000    0.000    0.000
X2                -0.028    0.067     -0.410   -0.028   -0.027
X3                -0.018    0.066     -0.263   -0.018   -0.017
X4                -0.022    0.063     -0.353   -0.022   -0.021
X5                -0.042    0.053     -0.789   -0.042   -0.043
X6                 0.034    0.051      0.668    0.034    0.035
X7                -0.039    0.054     -0.723   -0.039   -0.039
X8                 0.000    0.000      0.000    0.000    0.000
X9                 0.582    0.056     10.447    0.582    0.570
X10                0.580    0.056     10.315    0.580    0.564
X11                0.693    0.057     12.106    0.693    0.676
X12                0.671    0.048     13.929    0.671    0.675

SOCIAL   WITH
COPING             0.400    0.100      3.983    0.400    0.400

ENHANCE  WITH
COPING             0.313    0.105      2.992    0.313    0.313
SOCIAL             0.255    0.081      3.162    0.255    0.255

MODEL MODIFICATION INDICES
Minimum M.I. value for printing the modification index    10.000

M.I.     E.P.C.  Std E.P.C.  StdYX E.P.C.
WITH Statements
X10      WITH X9         24.856     0.213      0.213        0.203
X12      WITH X11        23.393     0.283      0.283        0.277



As shown in Table 5.8, large modification indices were obtained in
regard to the correlated errors of items 11 and 12, and items 9 and 10
(completely standardized EPCs = .28 and .20, respectively). The correlated
error between items 11 and 12 may be grounded substantively by the fact
that these are the only reverse-worded items in the questionnaire. It was
also described earlier in this chapter why the failure to specify this corre-
lated error may negatively impact the ability of the solution to reproduce
the observed relationship between items 9 and 10. Accordingly, the
researcher would likely take these results as evidence for the need to freely
estimate an error covariance between items 11 and 12 in a subsequent CFA
solution. The absence of other large modification indices suggests that
other measurement errors can be presumed to be random. Collectively,
these findings may foster the refinement of the solution initially suggested
by EFA—namely, that the CFA model should not be specified as conge-
neric (i.e., item 4 should load on two factors) and that all error covariances
may be fixed to zero with the exception of items 11 and 12.

MODEL IDENTIFICATION REVISITED

General rules and guidelines for CFA model identification were discussed
in Chapter 3. That discussion included basic principles such as the need to
define a metric for the latent variables, the need for model df to be positive
(i.e., the number of elements of the input matrix should equal or exceed
the number of freely estimated parameters), and the issue of empirical
underidentification (e.g., the marker indicator must be significantly re-
lated to its latent factor). However, in the current chapter, more complex
measurement models have been considered that entail double-loading
indicators and correlated indicator errors. Although these general rules
still apply, researchers are more likely to encounter identification problems
with more complex solutions. Thus, identification issues with such mod-
els are now discussed briefly.

Because latent variable software programs are capable of evaluating
whether a given model is identified, it is often most practical to simply try
to estimate the solution and let the computer determine the model’s identi-
fication status. Nevertheless, it is helpful for the researcher to be aware of
general model identification guidelines to avoid pursuing structurally or
empirically underidentified solutions (such as proposing them in research
grant applications). In addition to the guidelines presented in Chapter 3,
the researcher should be mindful of the fact that specification of a large
number of correlated errors may produce an underidentified model (even
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when model df is positive). As a general rule, for every indicator there
should be at least one other indicator in the solution (which may or may
not load on the same latent factor) with which it does not share an error
covariance (although in some cases, models that satisfy this rule may still
be underidentified; cf. Kenny, Kashy, & Bolger, 1998). In addition, models
specified with double-loading indicators may be more prone to under-
identification. As discussed in Chapter 6, empirical underidentification is
a serious problem in correlated methods approaches to CFA multitrait–
multimethod analyses where each indicator loads on both a trait factor and
a methods factor. The risk for underidentification is increased in models
that contain some mixture of double-loading indicators and correlated
errors. For instance, a solution would be underidentified if an indicator,
X1, was specified to load on Factors A and B, but was also specified to have
correlated errors with each of the Factor B indicators.

EQUIVALENT CFA SOLUTIONS

Another important consideration in model specification and evaluation is
the issue of equivalent solutions. Equivalent solutions exist when different
model specifications produce identical goodness of fit (with the same
number of df) and predicted covariance matrices (Σ) in any given data set.
Consider the two mediation models depicted below. Both models are
overidentified with one df corresponding to the nontautological relation-
ship between A and C. Although these models differ greatly in terms of
their substantive meaning (Model 1: A is a direct cause of B and an indirect
cause of C; Model 2: C is a direct cause of B and an indirect cause of A),
they generate the same predicted covariance matrix; that is, in both solu-
tions, the model-implied relationship of A and C is .30.9

Model 1:

Model 2:

Interested readers are referred to Stelzl (1986), Lee and Hershberger
(1990), and Hershberger (1994), who have developed rules for explicating
equivalent solutions for various types of SEM models. A noteworthy aspect
of this work is that the number of equivalent solutions is related to the sat-
uration of the model. Stated another way, models with fewer dfs have a
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greater number of alternative, equivalent solutions than more parsimoni-
ous models.

Figure 5.3 presents four equivalent CFA solutions. In this example,
the researcher is interested in examining the latent dimensionality of situa-
tional social anxiety (i.e., anxiety in social situations due to concerns
about being negatively evaluated by others, embarrassment, etc.). Of the
six indicators, four could be construed as measuring anxiety in one-on-
one social interactions (S1–S4), and the remaining two pertain to anxiety
in public speaking situations (S5, S6). Each of the four CFA models in Fig-
ure 5.3 is overidentified, with df = 13, and would fit the data equally well.

Models A and B exemplify a quandary often faced by applied CFA
researchers—in this case, should the additional covariance existing be-
tween the two public speaking indicators be accounted for as a distinct
latent factor (Model A), or within a unidimensional solution containing an
error covariance between S5 and S6 (Model B)? These alternative specifi-
cations may have substantial conceptual implications in the researcher’s
applied area of study. For instance, the Model A specification would for-
ward the conceptual notion that the construct of Social Anxiety is multidi-
mensional. Model B would assert that Social Anxiety is a broader unitary
construct and that the differential covariance of indicators S5 and S6 repre-
sents a correlated error, perhaps due to a substantively trivial method
effect (unlike S1–S4, these two indicators are more specifically worded to
assess anxiety in large groups). Because Models A and B provide the same
fit to the data, the procedures of CFA cannot be employed to resolve the
question of which model is more acceptable. This is particularly problem-
atic in instances where two or more equivalent models are substantively
plausible.

This example also illustrates how model fit and equivalent solutions can
be impacted by the composition of the indicator set. The latent dimen-
sionality of a collection of indicators may be strongly impacted by poten-
tially artifactual issues, such as the inclusion of individual items with very
similar or reverse wordings or the use of highly overlapping (multicollinear)
measures. In the present case, it might be decided prior to specifying a
unidimensional CFA model of social anxiety (along the lines of Model B)
that the S5 and S6 indicators are over-redundant (i.e., both assess anxiety in
speaking in front of large groups). If one of these indicators was omitted from
the analyses (or if the S5 and S6 were combined; cf. parceling in Chapter 9),
the researcher would avert the problems of poor model fit (if a correlated
error had not been specified between S5 and S6 in an initial one-factor
model) and equivalence with a two-factor specification (Model A).
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Model A

Model B

Model C

FIGURE 5.3. Examples of equivalent CFA models of social anxiety. S1, making
eye contact; S2, maintaining a conversation; S3, meeting strangers; S4, speaking
on the telephone; S5, giving a speech to a large group; S6, introducing yourself to
large groups. All path diagrams use latent-Y notation. In order for Model C to be
identified, the two higher-order factor loadings (i.e., General Social Anxiety →
Social Interaction Anxiety, General Social Anxiety → Public Speaking Anxiety)
must be constrained to equality. To identify Model D, the factor loadings of S5 and
S6 on the latent factor of Public Speaking Anxiety must be constrained to equality.



Figure 5.3 presents two additional equivalent CFA models of social
anxiety (assuming that a two-factor solution is conceptually viable).
Model C depicts a higher-order factor model (see Chapter 8) in which the
correlation between the lower-order factors of Social Interaction Anxiety
and Public Speaking Anxiety (Model A) is accounted for by a second-order
factor of General Social Anxiety. This specification would imply that social
interaction anxiety and public speaking anxiety represent distinct sub-
dimensions influenced by the broader construct of general social anxiety.
It should be noted that because there are only two lower-order factors, the
higher-order portion of Model C would be underidentified if the loadings
of General Anxiety → Social Interaction Anxiety and General Social Anxi-
ety → Public Speaking Anxiety were freely estimated (i.e., it is analogous
to the underidentified model depicted by Model A in Figure 3.6, Chapter
3). Thus, to identify Model C, the two higher-order factor loadings must
be constrained to be equal (equality constraints are discussed in detail in
Chapter 7).10

Methodologists have noted that some equivalent solutions can be
readily dismissed based on logic or theory (e.g., MacCallum, Wegener,
Uchino, & Fabrigar, 1993). Model D could be regarded as one such exam-
ple. In this model, S5 and S6 are purported to be indicators of both Social
Interaction Anxiety and Public Speaking Anxiety (this specification re-
quires an equality constraint for the S5 and S6 loadings on Public Speaking
Anxiety). However, Social Interaction Anxiety and Public Speaking Anxi-
ety are assumed to be unrelated (i.e., the factor covariance is fixed to zero).
It is likely that both of these assertions (S5 and S6 as indicators of anxiety
in one-on-one social interactions; orthogonal nature of social interaction
and public speaking anxiety) can be quickly rejected on conceptual
grounds. Other examples of nonsensical equivalent solutions include lon-
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gitudinal models with directional relationships among temporal variables
(e.g., regressing a Time 1 variable onto a Time 2 variable; i.e., Time 1 →
Time 2 vs. Time 2 → Time 1) or models with direct effects of predeter-
mined exogenous indicators such as gender or age (e.g., Gender → Job
Satisfaction vs. Job Satisfaction → Gender).

Figure 5.4 presents three equivalent solutions that entail a single
latent factor. In this example, the four indicators are observed measures
related to the construct of depression: hopelessness (D1), depressed mood
(D2), feelings of guilt (D3), and loss of interest in usual activities (D4). In
Model A, a simple one-factor measurement model is specified in which the
four indicators are presumed to be interrelated because they are each influ-
enced (caused) by the underlying dimension of Depression. In Model B,
the latent factor of Depression (now defined by indicators D2–D4) is
regressed onto the single indicator of hopelessness (D1). Although provid-
ing the same fit to the data, Models A and B are profoundly different in
terms of their conceptual implications. Unlike Model A, which presumes
that hopelessness is just another manifest symptom of depression, Model B
is in accord with a conceptualization that a sense of hopelessness is a cause
of depression. Note that Model A could be respecified such that any of the
four indicators are designated as having direct effects on the Depression
latent variable (e.g., Model C is similar to Model B, except that guilt, D3, is
specified as the cause of Depression). Models B and C can be regarded as
examples of CFA with covariates (covariates are sometimes referred to as
background variables; cf. Chapter 7). In such models, the latent factors are
endogenous (i.e., Latent Y variables) because the solution attempts to
explain variance in them with an exogenous indicator (e.g., D1 in Model
B). Accordingly, in Models B and C, the residual variance in Depression
(often referred to as a disturbance; see Chapters 3 and 7) is freely estimated
in the psi matrix (cf. Model A, where the factor variance is estimated in the
phi matrix). The residual variance in Depression is depicted as “E” in the
path diagrams of Models B and C (i.e., “E” = ϕ1). As will be seen in Chap-
ter 9, the issue of equivalent models is also germane to solutions that con-
tain formative constructs (i.e., latent variables “caused” by a composite set
of indicators), because such models can often be alternatively para-
meterized as MIMIC models (Chapter 7).

Perhaps the most widely cited article on the issue of equivalent SEM
models was published by MacCallum and colleagues in 1993. These
authors found that although equivalent models were quite common in
applied SEM research, this issue was virtually ignored by investigators. For
example, of the 20 SEM articles published in the Journal of Personality and
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Model A

Model B

Model C

FIGURE 5.4. Examples of equivalent CFA models of depression. D1, hopeless-
ness; D2, depressed mood; D3, guilt; D4, loss of interest in activities.



Social Psychology between 1988 and 1991, 100% reported a model where
there existed three or more equivalent models. The median number of
equivalent models in these studies was 12 (range of equivalent models = 3
to 33,925!). However, none of these studies contained an acknowledgment
of the existence of equivalent solutions. In the 10+ years since the publica-
tion of MacCallum et al. (1993), little has changed in regard to applied
researchers’ explicit recognition of equivalent models. This may be due in
part to the unavailability of utilities in latent variable software packages to
generate the equivalent models associated with the models specified by the
researcher. If such utilities were available, the equivalent models revealed
by the software could be evaluated by the researcher in terms of their sub-
stantive plausibility. In some cases, this process may lend further support
for the hypothesized model (i.e., in situations where there exist no zero
equivalent models, or where each of the equivalent models is conceptually
not viable). In other instances, the process may have considerable heuris-
tic value (e.g., reveal theoretically plausible alternative models that were
not recognized by the researcher).

SUMMARY

Poor-fitting models are common in applied data sets. It is important to
have a sound knowledge of the sample data and model before proceeding
with a CFA. Data screening procedures (e.g., normality, outliers), in tan-
dem with a proper missing data strategy (see Chapter 9), should be con-
ducted to help ensure that the sample data are appropriate for CFA and the
statistical estimator (e.g., ML). Principal components analysis is another
helpful procedure in this phase to verify that the input matrix is positive
definite (i.e., all resulting eigenvalues are positive). EFA and E/CFA are
important precursors to CFA for developing and refining a measurement
model. Although use of these methods will foster the chances of success in
the restrictive CFA framework (e.g., most or all cross-loadings and error
covariances are fixed to zero), the solution still may not satisfy one or
more of the three major criteria for model acceptability (i.e., overall good-
ness of fit, areas of localized strain in the solution, interpretability/strength
or parameter estimates). Thus, the researcher must be adept at diagnosing
and rectifying the sources of ill fit (interpretation of modification indices,
standardized residuals, and reasonability of parameter estimates), keeping
in mind both substantive issues (i.e., conceptual justification for the
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respecified model) and methodological considerations pertaining to the
principles of model identification, equivalent models, model comparison,
and improper solutions (e.g., knowing when additional parameters will
lead to underidentification).

The first five chapters of this book have covered what could be con-
sidered the “fundamentals” of CFA; that is, assuming no complications
such as non-normality or missing data, what every researcher “needs to
know” to conduct CFA properly with applied data sets. Beginning with
Chapter 6, which focuses on the topic of CFA with multitrait–
multimethod matrices, the remaining chapters of this book address more
specialized applications of CFA (e.g., higher-order factor models, multiple-
groups solutions, MIMIC models, scale reliability evaluation) and other
issues that frequently arise in the analysis of real data (e.g., missing data,
non-normality, categorical indicators, statistical power analysis).

NOTES

1. Correlated errors are sometimes referred to as minor factors, especially in
instances where three or more indicators loading a broader latent factor have
intercorrelated measurement errors. This terminology is most appropriate when
the error covariances are presumed to reflect a substantively salient dimension
(rather than a byproduct of the measurement approach such as reverse-worded
items) that is subsumed by a broader latent construct.

2. Unlike factor correlations = 1.0 or error variances = 0.0 (see discussion of
comparing one- and two-factor models), factor loadings, factor covariances, and
indicator error covariances that are fixed to 0.0 are not restrictions on the edge of
inadmissible parameter spaces (i.e., theoretically, these unstandardized parameters
can have values of ± ∞).

3. Interested readers are referred to Yuan, Marshall, and Bentler (2003) for a
detailed demonstration of how model misspecification affects parameter biases.

4. An alternative, yet less frequently used, approach to comparing non-
nested models involves tests based on “nested tetrads” (Bollen & Ting, 1993,
2000). Tetrads are differences in the products of pairs of covariances (e.g., τ1234 =
σ12σ34 – σ13σ24). Depending on the model specification, some tetrads will equal
zero (referred to as “vanishing tetrads”). Bollen (1990) derived a χ2 statistic to per-
form a simultaneous test of vanishing tetrads of a model to assess its fit to data (df
= the number of vanishing tetrads). Bollen and Ting have demonstrated scenarios
where two models are not structurally nested (i.e., one model does not contain a
subset of the freed parameters of the other) but are nested in their vanishing tet-
rads (i.e., the vanishing tetrads of one model are a subset of the other’s). In these
instances, two models can be compared by taking the difference in their χ2s.

5. This rule also applies to weight matrices associated with non-normal the-
ory estimators (e.g., weighted least squares, Chapter 9) and variance–covariance
matrices within the model (i.e., Θδ, Θε, Ψ, and Φ).
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6. On a related note, Heywood cases may occur in EFA when too many fac-
tors have been extracted from the data.

7. However, constraining a variance to zero places the estimate on the border
of inadmissibility (see the discussion in this chapter on the use of χ2 difference
testing to compare CFA models that differ in number of factors).

8. Although the most widely used software programs for EFA (e.g., SPSS) do
not provide significance testing of factor loadings, this feature is available in the
Comprehensive Exploratory Factor Analysis freeware program developed by
Michael Browne (this can be downloaded at quantrm2.psy.ohio-state.edu/browne/
software.htm), and in LISREL 8.72.

9. On rare occasions, equal goodness of fit (in terms of χ2, CFI, etc.) may
occur by chance for two models that do not produce the sample model-implied
covariance matrix. This is not an instance of equivalent models.

10. As shown in Chapter 8, a hierarchical model involving a single
higher-order factor and three lower-order factors produces the same goodness of
fit as a three-factor model where the factors are freely intercorrelated. This is
because the higher-order portion of the hierarchical model is just-identified
(i.e., analogous to Model B in Figure 3.6, Chapter 3).
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6

CFA of Multitrait–Multimethod
Matrices

As seen in prior chapters, CFA provides an elegant analytic frame-
work for evaluating the validity of constructs, and for examining the
interrelations of constructs adjusting for measurement error and an
error theory. The application of CFA to multitrait–multimethod (MTMM)
matrices offers an even more sophisticated methodology for estimating
convergent validity, discriminant validity, and method effects in the
evaluation of the construct validity of constructs in the social and
behavioral sciences. This chapter discusses the various ways an
MTMM CFA model can be parameterized and extended, and the
strengths and drawbacks of each approach. In addition to bolstering
the concepts of convergent and discriminant validity in the context of
CFA, the chapter illustrates the deleterious consequences that may
result from failing to account for measurement error and method
effects.

CORRELATED VERSUS RANDOM
MEASUREMENT ERROR REVISITED

In Chapter 5, the need for specifying correlated errors was discussed in
instances where some of the observed covariance of two or more indicators
is believed to be the effect of the measurement approach (i.e., method
covariance), over and above covariance explained by the substantive latent
factors. Thus, the error theory of a CFA measurement model can entail
some combination of random measurement error (i.e., the unexplained vari-
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ance of one indicator does not covary with the unexplained variance of
another) and correlated measurement error or uniqueness (i.e., the unex-
plained variance of one indicator covaries with the unexplained variance
of another), as guided by the conceptual or empirical basis of the model
specification. As discussed in Chapter 5, correlated errors should not be
specified solely for the purpose of improving model fit. In the majority of
models involving latent variables defined by multiple indicators, measure-
ment errors are freely estimated (and correlated errors, if applicable).
However, in some instances it is justified to impose constraints on these
parameters (e.g., constraining error variances to equality, as in the evalua-
tion of parallel tests) or to fix these estimates to predetermined values
(e.g., prespecifying the amount of measurement error in a variable mea-
sured by a single indicator; Chapter 4). These alternative specifications for
measurement errors are discussed in other chapters (Chapter 4 and Chap-
ter 7).

THE MULTITRAIT–MULTIMETHOD MATRIX

A common limitation of applied research is that the dimensionality and
validity of constructs are evaluated in a cross-sectional fashion using a sin-
gle measurement scale. For example, a researcher may hypothesize that
the negative symptoms of schizophrenia are comprised of three compo-
nents: flat affect, alogia (poverty of speech), social amotivation. To exam-
ine this notion, he or she develops a multi-item clinical observation rating
system that is subsequently used to rate the behavior of patients admitted
to a state hospital. After a sufficient sample has been collected, the ratings
are submitted to factor analysis. The results indicate a three-factor solu-
tion, which the researcher interprets as supporting the conjectured tripar-
tite model of negative symptoms. He or she concludes that the findings
attest to favorable convergent and discriminant validity in that features of
flat affect, alogia, and social amotivation are differentially intercorrelated
to such an extent that they load on distinct latent factors. Further support
for validity is obtained by results showing that the three latent factors are
more strongly related to measures of schizophrenia severity than indica-
tors of other disorders (e.g., bipolar disorder).

The aforementioned scenario is a common empirical sequence in
scale development and construct validation. Although a useful part of such
endeavors, this sequence provides an incomplete evaluation of construct
validity. It is not clear as to what extent the multidimensionality of the
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negative symptom rating scale could be attributed to artifacts of the indica-
tor set. For example, the chances of obtaining a distinct latent factor of
Flat Affect may be fostered by creation of a rating scale containing several
similarly worded items that assess this feature. This issue is particularly
salient in instances where factor analysis uncovers more latent dimensions
than initially predicted; that is, are these additional dimensions conceptu-
ally and practically useful, or do they stem from artifacts of scale develop-
ment (cf. Models A and B in Figure 5.3 in Chapter 5)? In addition, method
effects may obscure the discriminant validity of the constructs. That is,
when each construct is assessed by the same measurement approach (e.g.,
observer rating), it cannot be determined how much of the observed over-
lap (i.e., factor correlations) is due to method effects as opposed to “true”
covariance of the traits. In sum, construct validation is limited in instances
where a single assessment method is employed.

Campbell and Fiske (1959) developed the multitrait–multimethod
(MTMM) matrix as a method for establishing the construct validity of psy-
chological measures. This methodology entails a matrix of correlations
arranged in a manner that fosters the evaluation of construct validity. Con-
struct validity is the overarching principle of validity, referring to the extent
to which a psychological measure in fact measures the concept it purports
to measure. This approach requires that several traits (T; e.g., attitudes,
personality characteristics, behaviors) are each assessed by several methods
(M; e.g., alternative test forms, alternative assessment modalities such as
questionnaires and observer ratings, or separate testing occasions). The
result is a T × M correlation matrix that is interpreted with respect to con-
vergent validity, discriminant validity, and method effects.

An example of the MTMM matrix is presented in Table 6.1. In this
illustration, the researcher wishes to examine the construct validity of the
DSM-IV Cluster A personality disorders, which are enduring patterns of
symptoms characterized by odd or eccentric behaviors (American Psychi-
atric Association, 1994). Cluster A is comprised of three personality disor-
der constructs: (1) paranoid (an enduring pattern of distrust and suspicion
such that others’ motives are interpreted as malevolent); (2) schizoid (an
enduring pattern of detachment from social relationships and restricted
range of emotional expression); and (3) schizotypal (an enduring pattern
of acute discomfort in social relationships, cognitive and perceptual distor-
tions, and behavioral eccentricities). In a sample of 500 patients, each of
these three traits is measured by three assessment methods: (1) a self-
report inventory of personality disorders; (2) dimensional ratings from a
structured clinical interview of personality disorders; and (3) observa-
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tional ratings made by paraprofessional staff. Thus, Table 6.1 is a 3 (T) × 3
(M) matrix, arranged such that the correlations among the different traits
(personality disorders: paranoid, schizotypal, schizoid) are nested within
each method (assessment type: inventory, clinical interview, observer rat-
ings). The MTMM is a symmetric correlation matrix with one exception:
reliability estimates (e.g., Cronbach’s alphas) of the measures are inserted
in the diagonal in place of ones (e.g., in Table 6.1, the internal consistency
estimate of the inventory measure of paranoid personality is .93). As
Campbell and Fiske (1959) note, ideally the reliability diagonal should
contain the largest coefficients in the matrix; that is, the measure should
be more strongly correlated with itself than with any other indicator in the
MTMM matrix.

The MTMM matrix consists of two general types of blocks of coeffi-
cients: (1) monomethod blocks, which contain correlations among indica-
tors derived from the same assessment method; and (2) heteromethod
blocks, which contain correlations among indicators assessed by different
methods (see Table 6.1). Of central interest is the validity diagonal,
which corresponds to the diagonal within each heteromethod block—the
bolded correlations in Table 6.1. Correlations on the validity diagonal
represent estimates of convergent validity: different measures of theoreti-
cally similar or overlapping constructs should be strongly interrelated. In
the MTMM matrix, convergent validity is evidenced by strong cor-
relations among methods measuring the same trait (i.e.,
monotrait–heteromethod coefficients). For example, the findings in
Table 6.1 indicate that the three different measures of schizotypal per-
sonality are strongly interrelated (range of rs = .676 to .749). The off-
diagonal elements of the heteromethod blocks reveal discriminant valid-
ity: measures of theoretically distinct constructs should not be highly
intercorrelated. Discriminant validity in the MTMM matrix is evidenced
by weaker correlations between different traits measured by different
methods (i.e., heterotrait–heteromethod coefficients) in relation to corre-
lations on the validity diagonal (monotrait–heteromethod coefficients).
In Table 6.1, support for discriminant validity is obtained by the finding
that correlations in the off-diagonal elements of the heteromethod blocks
are uniformly lower (range of rs = .126 to .290) than the validity coeffi-
cients (range of rs = .557 to .749).

Finally, evidence of method effects is obtained by an examination of the
off-diagonal elements of the monomethod blocks. The extent of method
effects is reflected by the differential magnitude of correlations between
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different traits measured by the same method (heterotrait–monomethod
coefficients) relative to the correlations between the same two traits mea-
sured by different methods. As shown in Table 6.1, although not extreme,
some method variance is evident, especially for the inventory and observer
rating measures. For example, the observer ratings of the traits of paranoid
and schizotypal personality are more highly correlated (r = .383) than
heteromethod measures of these traits (e.g., the correlation between
paranoid and schizotypal personality traits measured by inventory and
observer rating, respectively, is .196; see Table 6.1). As in the present
example, when the collective results indicate that convergent and discrimi-
nant validity are high and method effects are negligible, construct validity
is supported.

CFA APPROACHES TO ANALYZING THE MTMM MATRIX

Despite the fact that the Campbell and Fiske (1959) methodology repre-
sented a significant advance in the conceptualization and evaluation of
construct validity, the MTMM approach was not widely used over the
years immediately following its inception. In addition, several limitations
of the MTMM methodology were noted, including the subjective nature of
its interpretation (e.g., ambiguity in terms of what patterns of correlations
reflect satisfactory convergent and discriminant validity), its reliance on
correlations among fallible observed measures to draw inferences about
trait and methods factors (cf. Schmitt & Stults, 1986), and the failure of
EFA to obtain meaningful solutions of MTMM data (e.g., identification
restrictions of EFA prevent specification of correlated errors; see Chap-
ter 2).

Interest in the MTMM matrix increased with the realization that the
procedures of CFA could be readily applied to its analysis (cf. Cole, 1987;
Flamer, 1983, Marsh & Hocevar, 1983; Widaman, 1985). In other words,
MTMM matrices, like any other form of correlation or covariance matrix,
can be analyzed by CFA to make inferences about potential underlying
dimensions such as trait and methods factors. Although several different
types of CFA models can be applied to MTMM data (cf. Marsh & Grayson,
1995; Widaman, 1985), two forms of CFA specification have been pre-
dominant. Using more contemporary terminology, these two types of solu-
tions have been referred to as correlated methods and correlated uniqueness
models (Marsh & Grayson, 1995).
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Correlated Methods Models

The correlated methods parameterization reflects the traditional CFA
approach to analyzing MTMM matrices. There are five major aspects of
correlated methods model specifications (Widaman, 1985): (1) to be iden-
tified, there must be at least three traits (T) and three methods (M); (2) T ×
M indicators are used to define T + M latent factors (i.e., the number of
trait factors = T; the number of method factors = M); (3) each indicator is
specified to load on two factors—its trait factor and its method factor (all
other cross-loadings are fixed to zero); (4) correlations among trait factors
and among method factors are freely estimated, but the correlations
between trait and method factors are usually fixed to zero; and (5) indica-
tor uniquenesses (i.e., variance in the indicators not explained by the trait
and method factors) are freely estimated but cannot be correlated with the
uniquenesses of other indicators. Accordingly, in this specification, each
indicator is considered to be a function of trait, method, and unique fac-
tors.

Figure 6.1 depicts the path diagram of the correlated methods CFA
specification for the MTMM matrix of Cluster A personality disorders
(Table 6.1). Table 6.2 provides the LISREL syntax for this model. For rea-
sons discussed later in this chapter (e.g., propensity for improper solu-
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TABLE 6.2. LISREL Syntax for Specification of a Correlated Methods CFA
of the MTMM Matrix of Cluster A Personality Disorders

TITLE LISREL SYNTAX FOR CORRELATED METHODS MTMM SPECIFICATION
DA NI=9 NO=500 MA=CM
LA
PARI SZTI SZDI PARC SZTC SZDC PARO SZTO SZDO
KM
1.000
0.290  1.000
0.372  0.478  1.000
0.587  0.238  0.209  1.000
0.201  0.586  0.126  0.213  1.000
0.218  0.281  0.681  0.195  0.096  1.000
0.557  0.228  0.195  0.664  0.242  0.232  1.000
0.196  0.644  0.146  0.261  0.641  0.248  0.383  1.000
0.219  0.241  0.676  0.290  0.168  0.749  0.361  0.342  1.000
SD
3.61 3.66 3.59 2.94 3.03 2.85 2.22 2.42 2.04
MO NX=9 NK=6 PH=SY,FR LX=FU,FR TD=SY,FR
LK
PARANOID SCHIZOTYP SCHIZOID INVENTRY INTERVW OBSERVE
PA LX
1 0 0 1 0 0
0 1 0 1 0 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1
PA TD
1
0 1
0 0 1
0 0 0 1
0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
PA PH
0
1 0
1 1 0
0 0 0 0
0 0 0 1 0
0 0 0 1 1 0
VA 1.0 PH(1,1) PH(2,2) PH(3,3) PH(4,4) PH(5,5) PH(6,6)
OU ME=ML RS MI SC AD=OFF IT=500 ND=4



tions), results of the correlated methods CFA specification for the Cluster
A personality disorders example are not provided.

An important special case of correlated methods solutions is the
uncorrelated methods model. Its specification is identical to that of corre-
lated methods, except that the covariances of the methods factors are fixed
to zero (Widaman, 1985); that is, in the LISREL syntax provided in Table
6.2, this would simply entail fixing the PH(5,4), PH(6,4), and PH(6,5) ele-
ments to zero instead of freely estimating these parameters. Because these
two models are nested, this comparison provides a statistical evaluation of
whether the effects associated with the different assessment methods are
correlated; for example, a lack of correlated method effects would be indi-
cated by a nonsignificant χ2 difference test.

Correlated Uniqueness Models

The correlated uniqueness CFA model (Kenny, 1979; Marsh, 1989) was
introduced as an alternative approach to analyzing MTMM data. Figure 6.2
depicts the path diagram of the correlated uniqueness CFA specification
for the MTMM matrix of Cluster A personality disorders (Table 6.1). In
order for the correlated uniqueness model to be identified, there must be
at least two traits (T) and three methods (M) (although a 2T × 2M model
can be fit to the data if the factor loadings of indicators loading on the
same trait factor are constrained to equality). Specification of the trait por-
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FIGURE 6.2. Correlated uniqueness CFA specification of the MTMM matrix of
Cluster A personality disorders.



tion of the correlated uniqueness model is the same as that of the corre-
lated methods approach: (1) each indicator is specified to load on one trait
factor (all other cross-loadings are fixed to zero); and (2) correlations
among trait factors are freely estimated. Thus, the key difference between
these parameterizations is the manner in which method effects are esti-
mated. In the correlated uniqueness model, method effects are estimated
by specifying correlated uniquenesses (errors) among indicators based on
the same assessment method rather than by method factors. Table 6.3 pro-
vides the programming syntax for this model in the LISREL, Mplus, EQS,
CALIS, and Amos languages.

A strong practical advantage of the correlated uniqueness approach
is that, unlike correlated methods models, this parameterization rarely
results in improper solutions (Kenny & Kashy, 1992; Marsh & Bailey,
1991; Tomás, Hontangas, & Oliver, 2000). Indeed, the correlated unique-
ness MTMM model of Cluster A personality disorders converged and pro-
duced a proper solution that provided an acceptable fit to the data, χ2 (15)
= 14.34, p = .50, SRMR = .025, RMSEA = 0.00 (90% CI = 0.00 to 0.04, CFit
= .99), TLI = 1.00, CFI = 1.00. Inspection of standardized residuals and
modification indices indicated a reasonable solution. The completely stan-
dardized parameter estimates of this solution are presented in Table 6.4.
With the exception of one correlated uniqueness (δ54), all unstandardized
parameter estimates are significantly different from zero (p < .05).

In regard to the parameter estimates produced by a correlated unique-
ness CFA model specification, trait factor loadings that are large and statis-
tically significant would be viewed in support of convergent validity.
However, large correlations among the trait factors would be indicative of
poor discriminant validity. The presence of appreciable method effects is
reflected by correlated uniquenesses among indicators assessed by the
same method that are moderate or greater in magnitude. The results in
Table 6.4 support the construct validity of the Cluster A personality disor-
ders. The trait factor loadings are consistently large (range = .712–.872),
providing evidence that the indicators are strongly related to their pur-
ported latent constructs (convergent validity), adjusting for the effects of
assessment method. Adequate discriminant validity is evidenced by the
modest correlations among trait factors (range = .310–.381). Although sig-
nificant method effects were obtained in all but one instance (SZTC with
PARC), the size of these effects is modest (standardized values range =
–.037–.293). As in the MTMM matrix presented in Table 6.1, method
effects estimated by the CFA model are smallest for the clinical ratings
indicators.

CFA of Multitrait–Multimethod Matrices 221



222

TABLE 6.3. Computer Syntax (LISREL, Mplus, EQS, CALIS, Amos) for Specification
of a Correlated Uniquenesses CFA of the MTMM Matrix of Cluster A Personality
Disorders

LISREL 8.72

TITLE LISREL SYNTAX FOR CORRELATED UNIQUENESS MTMM SPECIFICATION
DA NI=9 NO=500 MA=CM
LA
PARI SZTI SZDI PARC SZTC SZDC PARO SZTO SZDO
KM
1.000
0.290  1.000
0.372  0.478  1.000
0.587  0.238  0.209  1.000
0.201  0.586  0.126  0.213  1.000
0.218  0.281  0.681  0.195  0.096  1.000
0.557  0.228  0.195  0.664  0.242  0.232  1.000
0.196  0.644  0.146  0.261  0.641  0.248  0.383  1.000
0.219  0.241  0.676  0.290  0.168  0.749  0.361  0.342  1.000
SD
3.61 3.66 3.59 2.94 3.03 2.85 2.22 2.42 2.04
MO NX=9 NK=3 PH=SY,FR LX=FU,FR TD=SY,FR
LK
PARANOID SCHIZOTYP SCHIZOID
PA LX
1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1
PA TD
1
1 1
1 1 1
0 0 0 1
0 0 0 1 1
0 0 0 1 1 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1 1
PA PH
0
1 0
1 1 0
VA 1.0 PH(1,1) PH(2,2) PH(3,3)
OU ME=ML RS MI SC AD=OFF IT=500 ND=4

(cont.)
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TABLE 6.3. (cont.)

Mplus 3.11

TITLE:      MPLUS PROGRAM FOR CORRELATED UNIQUENESS MTMM MODEL
DATA:       FILE IS “C:\INPUT5.DAT”;

TYPE IS STD CORR;
NOBS ARE 500;

VARIABLE:   NAMES ARE PARI SZTI SZDI PARC SZTC SZDC PARO SZTO SZDO;
ANALYSIS:   ESTIMATOR=ML;
MODEL:      PARANOID BY PARI* PARC PARO;

SCHZOTYP BY SZTI* SZTC SZTO;
SCHIZOID BY SZDI* SZDC SZDO;
PARANOID@1.0; SCHZOTYP@1.0; SCHIZOID@1.0;
PARI SZTI WITH SZDI; PARI WITH SZTI; PARC SZTC WITH SZDC;
PARC WITH SZTC; PARO SZTO WITH SZDO; PARO WITH SZTO;
PARANOID SCHZOTYP WITH SCHIZOID; PARANOID WITH SCHZOTYP;

OUTPUT:     SAMPSTAT MODINDICES(3.84) STAND RESIDUAL;

EQS 5.7b

/TITLE
EQS SYNTAX FOR CORRELATED UNIQUENESS MTMM SPECIFICATION

/SPECIFICATIONS
CASES=500; VARIABLES=9; METHODS=ML; MATRIX=COR; ANALYSIS=COV;

/LABELS
v1=PARI; v2=SZTI; v3=SZDI; v4=PARC;
v5=SZTC; v6=SZDC; v7=PARO; v8=SZTO; v9=SZDO;
f1 = paranoid; f2 = schizotyp; f3 = schizoid;

/EQUATIONS
V1 =  *F1+E1;
V2 =  *F2+E2;
V3 =  *F3+E3;
V4 =  *F1+E4;
V5 =  *F2+E5;
V6 =  *F3+E6;
V7 =  *F1+E7;
V8 =  *F2+E8;
V9 =  *F3+E9;

/VARIANCES
F1 TO F3 = 1.0;
E1 TO E9= *;

/COVARIANCES
F1 TO F3 = *;
E1 TO E3= *; E4 TO E6= *; E7 TO E9= *;

/MATRIX
1.000
0.290  1.000
0.372  0.478  1.000
0.587  0.238  0.209  1.000
0.201  0.586  0.126  0.213  1.000
0.218  0.281  0.681  0.195  0.096  1.000
0.557  0.228  0.195  0.664  0.242  0.232  1.000
0.196  0.644  0.146  0.261  0.641  0.248  0.383  1.000
0.219  0.241  0.676  0.290  0.168  0.749  0.361  0.342  1.000

(cont.)
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TABLE 6.3. (cont.)

/STANDARD DEVIATIONS
3.61 3.66 3.59 2.94 3.03 2.85 2.22 2.42 2.04
/PRINT
fit=all;

/LMTEST
/WTEST
/END

SAS 8.2 PROC CALIS

Title “CALIS SYNTAX FOR CORRELATED UNIQUENESS MTMM SPECIFICATION”;
Data CLUSTA (type=CORR);
input _TYPE_ $ _NAME_ $ V1-V9;
label V1 = ‘pari’

V2 = ‘szti’
V3 = ‘szdi’
V4 = ‘parc’
V5 = ‘sztc’
V6 = ‘szdc’
V7 = ‘paro’
V8 = ‘szto’
V9 = ‘szdo’;

cards;
mean  .      0      0      0      0      0      0      0      0      0
std  .   3.61   3.66   3.59   2.94   3.03   2.85   2.22   2.42   2.04
N  .    500    500    500    500    500    500    500    500    500

corr V1  1.000   .      .      .      .      .      .      .      .
corr V2  0.290  1.000   .      .      .      .      .      .      .
corr V3  0.372  0.478  1.000   .      .      .      .      .      .
corr V4  0.587  0.238  0.209  1.000   .      .      .      .      .
corr V5  0.201  0.586  0.126  0.213  1.000   .      .      .      .
corr V6  0.218  0.281  0.681  0.195  0.096  1.000   .      .      .
corr V7  0.557  0.228  0.195  0.664  0.242  0.232  1.000   .      .
corr V8  0.196  0.644  0.146  0.261  0.641  0.248  0.383  1.000   .
corr V9  0.219  0.241  0.676  0.290  0.168  0.749  0.361  0.342  1.000
;
run;

proc calis data= CLUSTA cov method=ml pall pcoves;
var = V1-V9;
lineqs
V1 = lam1 f1 + e1,
V2 = lam2 f2 + e2,
V3 = lam3 f3 + e3,
V4 = lam4 f1 + e4,
V5 = lam5 f2 + e5,
V6 = lam6 f3 + e6,
V7 = lam7 f1 + e7,
V8 = lam8 f2 + e8,
V9 = lam9 f3 + e9;

(cont.)
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TABLE 6.3. (cont.)

std
f1-f3 = 1.0,
e1-e9 = td1-td9;

cov
f1-f3 = ph1-ph3,
e1-e3 = td10-td12,
e4-e6 = td13-td15,
e7-e9 = td16-td18;

run;

Amos Basic 5.0

‘ Example of Correlated Uniqueness MTMM in Amos 5.0

Sub Main ()
Dim sem As New AmosEngine

sem.TextOutput
sem.Standardized
sem.Mods 4               ‘ same as Amos default, MIs  4.0 are printed
sem.Smc

sem.BeginGroup “mtmm.txt”

sem.Structure “x1 =   PARANOID + (1) E1"
sem.Structure “x2 =   SCHIZOTP + (1) E2"
sem.Structure “x3 =   SCHIZOID + (1) E3"
sem.Structure “x4 =   PARANOID + (1) E4"
sem.Structure “x5 =   SCHIZOTP + (1) E5"
sem.Structure “x6 =   SCHIZOID + (1) E6"
sem.Structure “x7 =   PARANOID + (1) E7"
sem.Structure “x8 =   SCHIZOTP + (1) E8"
sem.Structure “x9 =   SCHIZOID + (1) E9"

sem.Structure “PARANOID (1)”
sem.Structure “SCHIZOTP (1)”
sem.Structure “SCHIZOID (1)”

sem.Structure “PARANOID  SCHIZOTP”
sem.Structure “PARANOID  SCHIZOID”
sem.Structure “SCHIZOTP  SCHIZOID”

sem.Structure “E1  E2"
sem.Structure “E1 <—> E3"
sem.Structure “E2 <—> E3"
sem.Structure “E4 <—> E5"
sem.Structure “E4 <—> E6"
sem.Structure “E5 <—> E6"
sem.Structure “E7 <—> E8"
sem.Structure “E7 <—> E9"
sem.Structure “E8 <—> E9"

End Sub
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ADVANTAGES AND DISADVANTAGES OF CORRELATED
METHODS AND CORRELATED UNIQUENESS MODELS

As Kenny and Kashy (1992) note, an appealing feature of the correlated
methods model is that it corresponds directly to Campbell and Fiske’s
(1959) original conceptualization of the MTMM matrix. Under this speci-
fication, each indicator is considered to be a function of trait, method, and
unique variance. For instance, using the completely standardized solu-
tion, the squared trait factor loading (squared multiple correlations or
communalities), squared method factor loading, and uniqueness for any
given indicator sum to 1.0. Thus, these estimates can be interpreted as the
proportions of trait, method, and unique variance of each indicator. More-
over, the parameter estimates produced by correlated methods solutions
provide seemingly straightforward interpretations with regard to construct
validity; for example, large trait factor loadings suggest favorable conver-
gent validity, small or nonsignificant method factor loadings imply an
absence of method effects, and modest trait factor intercorrelations suggest
favorable discriminant validity. The specification of method factors fosters
the substantive interpretation of method effects. Because the covariance
associated with a given method is (it is hoped) accounted for by a single
latent factor (e.g., a method factor for Observer Ratings; see Figure 6.1),
method effects are assumed to be unidimensional (although, as discussed
later, this assumption does not always hold). Moreover, unlike the corre-
lated uniqueness model, the correlated methods approach allows for the
evaluation of the extent to which method factors are intercorrelated.

However, an overriding drawback of the correlated methods model is
that it is usually empirically underidentified. Consequently, a correlated
methods solution will typically fail to converge. If it does converge, the
solution will usually be associated with Heywood cases (Chapter 5) and
large standard errors. For instance, using more than 400 MTMM matrices
derived from real and simulated data, Marsh and Bailey (1991) found that
the correlated methods model resulted in improper solutions 77% of the
time. These authors noted that improper solutions were most probable
when the MTMM design was small (e.g., 3T × 3M), when sample size was
small, and when the assumption of unidimensional method effects was
untenable. Moreover, Kenny and Kashy (1992) demonstrated that the cor-
related methods model was empirically underidentified in two special
cases: (1) when the loadings on a trait or methods factor are equal; and (2)
when there is no discriminant validity between two or more factors.
Although these conditions are never perfectly realized, Kenny and Kashy
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(1992) have shown that research data frequently approximate these cases
(e.g., factor loading estimates that are roughly equal in magnitude). When
factor loadings are roughly equal or if discriminant validity is poor,
this empirical underidentification results in severe estimation difficulties.
Because of these problems, Kenny and Kashy (1992) and other metho-
dologists (e.g., Marsh & Grayson, 1995) have recommended the use of the
correlated uniqueness model over the correlated methods approach for the
analysis of MTMM data. However, other researchers (Lance, Noble, &
Scullen, 2002) have concluded that, given the substantive strengths of the
correlated methods model, the correlated uniqueness model should be
used only if the correlated methods model fails. These authors underscore
the various design features that may foster the chances of obtaining an
admissible correlated methods solution (e.g., increased sample size, larger
MTMM designs).1

Although their propensity for estimation problems is the primary dis-
advantage of correlated methods models, researchers have noted another
limitation with this specification approach. In particular, these models do
not allow for multidimensional method effects. A method effect would be
multidimensional if there exist two or more systematic sources of variabil-
ity (aside from the underlying trait) that affect some or all of the indicators
in the model (e.g., response set, reverse-worded questionnaire items, indi-
cators differentially affected by social desirability or the tendency for over-
or underreporting). As noted earlier, correlated methods models attempt
to explain all the covariance associated with a given assessment method by
a single method factor; hence, the methods effects are assumed to be
unidimensional. Although these models do not permit correlations be-
tween trait and method factors, researchers have demonstrated instances
where this assumption is unrealistic (e.g., Kumar & Dillon, 1992). More-
over, methodologists have illustrated scenarios in which the partitioning of
observed measure variance into trait and method components does not
produce trait-free and method-free interpretations (e.g., Bagozzi, 1993).

Unlike the correlated methods model, correlated uniqueness mod-
els rarely pose estimation problems. For instance, in the Marsh and
Bailey (1991) study, correlated uniqueness model specifications resulted in
proper solutions 98% of the time. In addition, these models can accommo-
date both unidimensional and multidimensional method effects because
method covariance is reproduced by freely estimated correlations (which
may differ greatly in magnitude) among indicators based on the same
assessment approach. However, the interpretation of correlated unique-
nesses as method effects is not always straightforward (e.g., Bagozzi,
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1993). Although this parameterization allows for multidimensional method
effects, the resulting solution does not provide information on the inter-
pretative nature of these effects (e.g., does not foster a substantive explana-
tion for why the magnitude of the correlated errors may vary widely), and
so, for instance, it can be difficult to determine which method has the most
method variance.

Another potential drawback of the correlated uniqueness model is its
assumption that the correlations among methods, and the correlations
between traits and methods, are zero. In fact, when the number of traits
(T) is three, the correlated uniqueness model and the uncorrelated meth-
ods model virtually always produce equivalent solutions (e.g., model df
and goodness of fit are identical; the parameter estimates from one solu-
tion can be transformed into the other). Methodologists (e.g., Byrne &
Goffin, 1993; Kenny & Kashy, 1992) have shown how the parameter esti-
mates of a correlated uniqueness solution may be biased when the assump-
tion of zero correlations among methods and between methods and traits
does not hold. If these zero correlation constraints are not tenable, the
amount of trait variance and covariance between trait factors will be over-
estimated, resulting in inflated estimates of convergent validity and lower
estimates of discriminant validity, respectively (Kenny & Kashy, 1992;
Marsh & Bailey, 1991). Kenny and Kashy (1992) have illustrated this bias-
ing effect in situations where the covariances among methods are mistak-
enly assumed to be zero and the true factor loadings are all equal:

The average method–method covariance is added to each element of the
trait–trait covariance matrix. So, if the methods are similar to one another,
resulting in positive method–method covariances, the amount of trait vari-
ance will be overestimated as will be the amount of trait–trait covariance.
(pp. 169–170)

Although the size of these biases is usually trivial (Marsh & Bailey, 1991),
Kenny and Kashy (1992) nonetheless recommend that researchers using
correlated uniqueness models to analyze MTMM data should try to
employ assessment methods that are as independent as possible.

OTHER CFA PARAMETERIZATIONS OF MTMM DATA

A number of other CFA-based strategies for analyzing MTMM data have
been developed. One of the more prominent alternative approaches is the
direct product model (Browne, 1984a; Cudeck, 1988; Wothke & Browne,
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1990). Unlike the preceding CFA approaches, the direct product model
addresses the possibility that method factors interact with trait factors in a
multiplicative manner rather than additively (cf. Campbell & O’Connell,
1967). In other words, method effects may augment the correlations of
strongly related traits more than they augment the correlations of weakly
related constructs; for example, the higher the correlation between traits,
the greater the effects of methods. When the data conform to the direct
product model, this parameterization provides an elegant test of the crite-
ria outlined by Campbell and Fiske (1959) for evaluating convergent and
discriminant validity (for applied examples, see Bagozzi & Yi, 1990;
Coovert, Craiger, & Teachout, 1997; and Lievens & Conway, 2001).
Another advantage of this method is that it estimates a correlation matrix
for the methods. This matrix can be inspected to evaluate the similarity of
methods; for example, high correlations between purportedly distinct
methods would challenge their discriminant validity (i.e., the methods are
in effect the same). However, the direct product model is relatively difficult
to program and interpret (the reader is referred to Bagozzi & Yi, 1990,
and Wothke, 1996, for fully worked through LISREL parameterizations
of direct product solutions). The direct product model often produces im-
proper solutions, although much less so than correlated methods ap-
proaches (e.g., Lievens & Conway, 2001). A number of other disadvan-
tages have been noted. For instance, some researchers (e.g., Podsakoff et
al., 2003) have concluded that the extant evidence indicates that trait ×
method interactions are not very common or potent and thus a simpler
CFA parameterization will usually be just as good. Nevertheless, more
extensive evaluation of the direct product model is needed.

A newer alternative is the correlated trait–correlated method minus one
model, CT–C(M–1) (Eid, 2000; Eid, Lischetzke, Nussbeck, & Trierweiler,
2003). The CT-C(M-1) model is very similar to the correlated methods
model (Figure 6.1), except that it contains one method factor less than the
methods included (M–1); for example, the path diagram in Figure 6.1
could be converted into a CT–C(M–1) model by eliminating the Inventory
method factor.2 This parameterization resolves some identification prob-
lems of the correlated methods model. The omitted method factor be-
comes the “comparison standard.” The principal notion behind the
CT–C(M–1) model is that, for each trait, the true-score variables of indica-
tors of the comparison standard are regressors in a latent regression analy-
sis in which the dependent measures are the true-score variables of the
“nonstandard” methods (“nonstandard” indicates methods other than the
comparison standard). Thus, a method factor is a residual factor common
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to all variables measured by the same method. In other words, it represents
the portion of a trait measured by a nonstandard method that cannot be
predicted by the true-score variable of the indicators measured by the
comparison standard method. A step-by-step illustration of the
CT–C(M–1) model is presented in Eid et al. (2003); for an applied exam-
ple, see Lischetzke and Eid (2003). The CT–C(M–1) has many of the
strengths of the correlated methods model (e.g., straightforward decompo-
sition of trait, method, and error effects) but avoids the serious problems
of underidentification and improper solutions. The CT–C(M–1) model has
several other advantages. When multiple indicators are used (see note 2),
the CT–C(M–1) model can test for trait-specific method effects (i.e., there
exists a source of variance specific to each trait–method combination),
allowing the researcher to examine the generalizability of method effects
across traits. Moreover, the model also provides correlations among meth-
ods factors, and to some extent, information on the relationships between
method factors and trait factors. One limitation is the asymmetry of the
CT–C(M–1) model because a comparison standard method must be
selected. Choice of the comparison standard may be clear-cut in some situ-
ations (e.g., when a “gold standard” exists), but not others (e.g., when all
methods are somewhat similar or randomly chosen). Like the direct prod-
uct model, the performance of the CT–C(M–1) model in applied and sim-
ulated data sets has yet to receive extensive study.

CONSEQUENCES OF NOT MODELING METHOD
VARIANCE AND MEASUREMENT ERROR

It was noted in earlier chapters (e.g., Chapters 3 and 5) that the ability to
model method effects is an important advantage of CFA over EFA. For
instance, EFAs of questionnaires that were designed to measure uni-
dimensional constructs (e.g., self-esteem) tend to produce two-factor solu-
tions (Positive Self-Esteem, Negative Self-Esteem). These multidimen-
sional latent structures stem from method effects introduced by including
reverse-worded items. A conceptually more viable unidimensional struc-
ture can be upheld by CFA through specification of a single trait factor
(e.g., Self-Esteem) and method effects (e.g., correlated errors) among the
reverse-worded items (e.g., Marsh, 1996). In CFA, specification of a one-
factor model without method effects would result in a poor-fitting solu-
tion. The correlated errors are needed to account for the additional covari-
ance among items that is due to nonrandom measurement error (e.g.,
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acquiescent response style). In addition, this specification yields better
estimates of the relationships between the indicators and the latent con-
struct (i.e., reduces bias in the factor loadings).

These points also apply to the CFA of MTMM data. For instance,
when the data in Table 6.1 are reanalyzed without modeling method vari-
ance (i.e., three trait factors are specified, all measurement error is pre-
sumed to be random), a poorly fitting solution results, χ2 (24) = 454.41, p
< .001, SRMR = .063, RMSEA = 0.183 (90% CI = 0.168 to 0.199, CFit <
.001), TLI = .765, CFI = .843. Inspection of standardized residuals and
modification indices reveal that relationships among indicators obtained
from the same assessment method are not well explained by the model; for
example, standardized residuals (LISREL) for observer ratings:

PARO SZTO SZDO
———— ———— ————

PARO - -
SZTO 4.3866 - -
SZDO 3.9154 3.6211 - -

The failure to account for method variance may lead to the false con-
clusion that the constructs under study have poor discriminant validity.
This is because the correlations among the factors (traits) are apt to be
inflated by the CFA estimation process. Because method effects have not
been taken into account in the model specification, the estimation process
attempts to reproduce the additional covariance of indicators sharing the
same assessment method by increasing the magnitude of the factor correla-
tions (cf. Eq. 3.8, Chapter 3). This is exemplified in the current data set,
where each of the correlations among the Cluster A personality traits are
inflated when method effects are not taken into account; for example, cor-
relation of Schizotypal and Schizoid = .31 and .36 in CFA solutions with
and without method effects, respectively. This is less problematic in the
Table 6.1 data since the parameter estimates would not be interpreted in
the context of a poorly fitting model (e.g., RMSEA = 0.183), and the factor
correlations in both solutions are not large (e.g., .31 vs. .36). However, this
will not always be the case in applied data sets (e.g., inflation of factor cor-
relations can be more extreme).

Another good example in the applied literature on the effects of (not)
modeling measurement error is in the area of emotion. Investigators have
long debated whether positive and negative mood (e.g., happiness and
sadness) are largely independent (i.e., separate constructs) or bipolar (i.e.,
represent opposite ends of a single dimension). Although original theories
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of emotion assumed bipolarity, much of the early research did not support
this position. For instance, the initial evidence showed that single indica-
tors of happy and sad moods were not strongly correlated. Consequently,
EFAs typically revealed two-factor solutions, along the lines of EFAs of
questionnaires containing reversed items (described above). However,
researchers later came to learn that the low correlations between indicators
of positive and negative moods may be due to the failure to consider and
model the effects of random and nonrandom response error (e.g., Green,
Goldman, & Salovey, 1993; Russell, 1979). A thorough description of the
sources of systematic error in the measurement of affect can be found in
Russell (1979) and Green et al. (1993).3 But when random and systematic
error is adjusted for, the correlation between positive and negative emo-
tions increases to an extent that severely challenges the differentiation
(discriminant validity) of these dimensions.

To illustrate, a sample correlation matrix from Green et al. (1993) is
presented in Figure 6.3 (N = 304 undergraduates). The emotions of happi-
ness and sadness were assessed by four different types of self-report for-
mats: adjective checklist, item response options ranging from strong agree-
ment to strong disagreement, self-description response options ranging
from very well to not at all, and a semantic differential Likert scale. Some
of the correlations seen in Figure 6.3 might be mistakenly interpreted in
support of the notion that happiness and sadness are distinct dimensions;
for example, the correlation between adjective checklist indicators of hap-
piness and sadness is –.10. When a CFA model with the appropriate error
theory is fit to these data (see path diagram in Figure 6.3), a different pic-
ture emerges. The two-factor measurement model, which takes random
and nonrandom error into account, provides a reasonable fit to the data,
χ2(15) = 26.13, p = .036, SRMR = .026, RMSEA = 0.049 (90% CI = 0.01 to
0.08, CFit = .487), TLI = .993, CFI = .996. However, the factor correlation
of Happiness and Sadness is found to be –.87, a result that seriously chal-
lenges the discriminant validity of these constructs and upholds the con-
tention of the bipolarity of emotion. These findings strongly underscore
the importance of multimethod research designs and analytic approaches
(i.e., CFA) that model measurement error in construct validation.

SUMMARY

CFA approaches to MTMM matrices (and the MTMM approach in general)
continue to be somewhat underutilized in many areas of the applied litera-
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ture. This is presumably due in part to the fact that, in many cases, multi-
ple measures are not available for a given construct (e.g., the correlated
uniqueness approach ordinarily requires at least three assessment meth-
ods). Although the examples used in this chapter involved relatively dispa-
rate assessment methods, these approaches can be employed for constructs
assessed by a single assessment modality; for example, Cluster A personal-
ity dimensions assessed by three different self-report inventories (also see
Green et al., 1993).

MTMM models can be extended in useful ways. First, the MTMM
model could be embedded in a larger structural equation model, such as
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Correlations (N = 304):

HACL HAD HDESC HLKRT SACL SAD SDESC SLKRT

HACL 1.00
HAD .60 1.00
HDESC .59 .69 1.00
HLKRT .59 .67 .74 1.00
SACL -.10 -.46 -.53 -.50 1.00
SAD -.44 -.53 -.63 -.64 .68 1.00
SDESC -.44 -.48 -.59 -.59 .52 .60 1.00
SLKRT -.47 -.59 -.65 -.66 .60 .69 .61 1.00

FIGURE 6.3. Path diagram and input data for CFA model of positive and nega-
tive mood. Correlation matrix is taken from Green et al. (1993, Table 7). The first
letter of each indicator refers to the construct it purportedly measures: H, happy;
S, sad. The remaining letters of each indicator pertain to the self-report assess-
ment format: ACL, adjective checklist; AD, agree–disagree format; DESC, self-
descriptive format; LKRT, semantic differential Likert scale.



one that relates the trait factors to background variables or distal outcomes
that represent external validators; for example, are the Cluster A personal-
ity dimensions differentially related to salient clinical variables such as
comorbidity, overall functioning, or long-term adjustment? Such analyses
could strongly bolster the importance of the substantive constructs of the
MTMM model (e.g., establish their predictive validity). A second possible
extension is analyzing the MTMM model within a multiple-groups solu-
tion to determine whether salient parameters (e.g., trait factor loadings)
are invariant across salient subgroups (e.g., is each observed measure of
Cluster A personality related to the substantive trait in an equivalent man-
ner for men and women?). Approaches to evaluating invariance of CFA
models are presented in Chapter 7, along with the analysis of mean struc-
tures (i.e., indicator intercepts, latent factor means).

NOTES

1. For instance, Tomás et al. (2000) found that, under some conditions, the
correlated methods model works reasonably well (and perhaps better than the cor-
related uniqueness approach) when more than two indicators per trait–method
combination are available. However, because the typical MTMM study is a 3T ×
3M design with a single indicator per each trait–method combination (Marsh &
Grayson, 1995), evaluation of the correlated methods model under the conditions
studied by Tomás et al. (2000) may not be practical in many applied research sce-
narios.

2. The CT–C(M–1) model can be identified with as few as two traits and two
methods. However, to separate trait, method, and error effects in the model, at
least two indicators per each trait–method combination are required (e.g., for each
trait in Figure 6.1, at least two inventory indicators, two clinical interview indica-
tors, and two observer rating indicators are needed; p = 18).

3. In addition, a comprehensive review of the most common types of method
effects found in social and behavioral sciences research is provided by Podsakoff et
al. (2003).
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7

CFA with Equality Constraints,
Multiple Groups,
and Mean Structures

The previous CFA examples presented in this book have been esti-
mated within a single group, used a variance–covariance matrix as
input, and entailed model parameters that were either freely estimated
or fixed. In this chapter, these analyses are extended in several ways.
For instance, some CFA specifications will place equality constraints
on selected parameters of the measurement model. Such constraints
may be applicable in CFA analyses involving a single group (e.g., do
the items of a questionnaire assess the same latent construct in equiva-
lent units of measurement?) or two or more groups (e.g., do males and
females respond to items of a measuring instrument in a similar man-
ner?). In addition, two different approaches to CFA with multiple
groups are presented (multiple-groups CFA, MIMIC models) in context
of the analysis of measurement invariance and population heterogene-
ity. Finally, CFA is extended to the analysis of mean structures involving
the estimation of indicator intercepts and latent factor means and the
evaluation of their equivalence in multiple groups. Consequently, the
input matrix must include the sample means of the indicators, in addi-
tion to their variances and covariances. The substantive applications
of each approach are discussed.
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OVERVIEW OF EQUALITY CONSTRAINTS

As first noted in Chapter 3, parameters in a CFA solution can be freely esti-
mated, fixed, or constrained. A free parameter is unknown, and the
researcher allows the analysis to find its optimal value that, in tandem with
other model estimates, minimizes the differences between the observed
and predicted variance–covariance matrices (e.g., in a one-factor CFA
model, obtain the set of factor loadings that best reproduce the observed
correlations among four input indicators). A fixed parameter is pre-
specified by the researcher to be a specific value, most commonly either
1.0 (e.g., in the case of marker indicators or factor variances to define the
metric of a latent variable) or 0 (e.g., the absence of cross-loadings or error
covariances). As with a free parameter, a constrained parameter is also
unknown. However, the parameter is not free to be any value, but rather
the specification places restrictions on the values it may assume. The most
common form of constrained parameters are equality constraints, in which
unstandardized parameters are restricted to be equal in value (i.e., see the
section in Chapter 8 on scale reliability evaluation for a different type of
constrained parameter). Consider a CFA model in which four indicators
are specified to load on a single factor. If the CFA specification entails an
equality constraint on the four factor loadings, the specific value of these
loadings is unknown a priori (as in models with freely estimated factor
loadings), but the analysis must find a single estimate (applied to all four
loadings) that best reproduces the observed relationships among the four
indicators. This is unlike the models with freely estimated parameters
where the factor loadings are free to take on any set of values that maxi-
mize the fit of the solution. Two important principles apply to the various
examples of equality constraints discussed in this chapter. First, as with
fixed parameters, these constraints are placed on the unstandardized solu-
tion. Accordingly, the indicators whose parameters are to be held equal
should have the same metric; for example, the unstandardized loading of
an indicator defined by a 0–100 scale will inherently differ from the
unstandardized loading of an indicator measured on a 1–8 scale. Second,
because a CFA model with equality constraints is nested under the mea-
surement model without these constraints (i.e., it entails a subset of the
parent model’s freely estimated parameters), χ2 difference testing can be
employed as a statistical comparative evaluation of the constrained solu-
tion. For example, if the CFA model where the four factor loadings are
held to equality does not produce a significant reduction in fit relative to
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the corresponding unconstrained solution, it can be concluded that the
four indicators have equivalent relationships to the latent factor.

EQUALITY CONSTRAINTS WITHIN A SINGLE GROUP

Congeneric, Tau-Equivalent, and Parallel Indicators

In Chapter 3, it was noted that most CFA specifications in applied research
entail congeneric indicator sets. Congeneric indicators are presumed to
measure the same construct, and the size of their factor loadings and mea-
surement errors are free to vary; in addition, the assumption of indepen-
dent measurement errors must hold. Figure 7.1 provides an example of a
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FIGURE 7.1. Two-factor model of memory. X1, Logical Memory; X2, Verbal
Paired Association; X3, Word List; X4, Faces; X5, Family Pictures; X6, Visual
Reproduction.

Sample Correlations and Standard Deviations (SDs); N = 200

X1 X2 X3 X4 X5 X6
X1 1.000
X2 0.661 1.000
X3 0.630 0.643 1.000
X4 0.270 0.300 0.268 1.000
X5 0.297 0.265 0.225 0.805 1.000
X6 0.290 0.287 0.248 0.796 0.779 1.000

SD: 2.610 2.660 2.590 1.940 2.030 2.050



congeneric model in which the first three observed measures (X1, X2, X3)
are indicators of one latent construct (Auditory Memory), and the second
set of measures (X4, X5, X6) are indicators of another latent construct
(Visual Memory). In addition to congeneric models, the psychometric lit-
erature distinguishes more restrictive solutions that test for the conditions
of tau-equivalent and parallel indicators. A tau-equivalent model entails a
congeneric solution in which the indicators of a given factor have equal
loadings but differing error variances. As noted previously, when the con-
dition of equal factor loadings holds, it can be asserted that the indicators
have equivalent relationships with the underlying construct they measure.
Stated another way, a one-unit change in the latent variable is associated
with the same amount of change in each indicator that loads on that factor.
The most restrictive solution treats indicators as parallel, in which the
observed measures are posited to have equal factor loadings and equal
error variances. Thus, in addition to the assumption that indicators mea-
sure the latent construct in the same units of measurement (tau equiva-
lence), parallel indicators are assumed to measure the latent construct
with the same level of precision (i.e., reflected by equivalent error vari-
ances).1 These distinctions have psychometric implications. For instance,
Raykov (2001a) has shown that Cronbach’s coefficient alpha is a mis-
estimator of the scale reliability of a multicomponent measuring instru-
ment (e.g., multiple-item questionnaire) when the assumption of tau
equivalence does not hold (in Chapter 8, a CFA-based approach to esti-
mating scale reliability is presented that does not rest on this assumption).
If the conditions of parallel indicators are met, this lends support for the
notion that the measures in question are psychometrically interchange-
able, a finding that is germane to the endeavor of establishing parallel test
forms or justifying the practice of operationalizing a latent construct by
summation of its indicators’ observed scores (McDonald, 1999).

The test for tau-equivalent and parallel indicators begins with the
evaluation of the congeneric measurement model in which the factor load-
ings and residual variances are free to vary. If the conditions of a conge-
neric solution are not met (e.g., an indicator loads on more than one fac-
tor), the analysis would not proceed to the evaluation of tau equivalence
unless, perhaps, substantive considerations allow for the measurement
model to be revised to conform to a congeneric model (e.g., removal of a
cross-loading indicator). In the context of a congeneric measurement
model, the test for tau equivalence is conducted by placing the appropriate
restrictions on the solution (i.e., equality constraints on indicators that
load on the same factor) and evaluating the resulting change in model χ2
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using the less restricted congeneric model as the baseline solution. If the
results are in accord with tau equivalence, that is, constraining the factor
loadings to equality does not result in a significant increase in χ2, the anal-
ysis can proceed to the evaluation of parallel indicators.

To illustrate this procedure, a two-factor model of memory is used in
which three observed measures are posited to be indicators of the construct
of Auditory Memory (X1 = logical memory, X2 = verbal paired association,
X3 = word list) and three additional measures are posited to be indicators of
the construct of Visual Memory (X4 = faces, X5 = family pictures, X6 = visual
reproduction) (the example is loosely based on the structure of the Wechsler
Memory Scale, Wechsler, 1997; for applied CFA examples in this research
domain, see Price, Tulsky, Millis, & Weiss, 2002, and Tulsky & Price, 2003).
The measurement model is presented in Figure 7.1 along with the sample
(N = 200) correlations and standard deviations of the six indicators.

The congeneric, two-factor solution provides a good fit to the data,
χ2(8) = 4.88, p = .77, SRMR = .012, RMSEA = 0.00 (90% CI = 0.00 to 0.06,
CFit = .93), TLI = 1.01, CFI = 1.00. The inspection of modification indices
and standardized residuals reveals no areas of strain in the solution. The
model parameter estimates are presented in Table 7.1. All six factor load-
ings are statistically significant (ps < .001) and sufficiently large (range of
completely standardized estimates = .78 to .91) (in this example, the met-
ric of the latent variables was defined by fixing factor variances to 1.0). As
expected, the constructs of Auditory Memory and Visual Memory are sig-
nificantly correlated (p < .001), φ21 = .38.

First, the tau equivalence of the indicators that load on Auditory
Memory are examined. This is performed by placing an equality constraint
on the factor loadings of the X1, X2, and X3 indicators. Table 7.2 provides
the programming syntax for this model in the LISREL, Mplus, EQS, Amos,
and CALIS languages. As shown in this table, the software programs differ
in their syntax for imposing equality constraints on the model parameters.
In LISREL, this restriction is accomplished by adding the line

EQ LX(1,1) LX(2,1) LX(3,1)

where EQ is the keyword for holding the parameters that follow to equal-
ity. The syntax also illustrates a programming shortcut in LISREL, TD =
DI, where the theta-delta matrix is specified to be diagonal (DI), meaning
that the indicator error variances are freely estimated and the error
covariances are fixed to 0 (i.e., the only freed parameters within TD are on
the diagonal). In Mplus, the equality constraints are reflected in the line
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TABLE 7.1. Mplus Results of the Two-Factor Model of Memory

TESTS OF MODEL FIT

Chi-Square Test of Model Fit
Value 4.877
Degrees of Freedom 8
P-Value 0.7706

CFI/TLI
CFI 1.000
TLI 1.008

RMSEA (Root Mean Square Error Of Approximation)
Estimate 0.000
90 Percent C.I. 0.000 0.057
Probability RMSEA <= .05 0.929

SRMR (Standardized Root Mean Square Residual)
Value 0.012

MODEL RESULTS
Estimates S.E. Est./S.E. Std StdYX

AUDITORY BY
X1 2.101 0.166 12.663 2.101 0.807
X2 2.182 0.168 12.976 2.182 0.823
X3 2.013 0.166 12.124 2.013 0.779

VISUAL BY
X4 1.756 0.108 16.183 1.756 0.907
X5 1.795 0.115 15.608 1.795 0.887
X6 1.796 0.117 15.378 1.796 0.878

VISUAL WITH
AUDITORY 0.382 0.070 5.464 0.382 0.382

Variances
AUDITORY 1.000 0.000 0.000 1.000 1.000
VISUAL 1.000 0.000 0.000 1.000 1.000

Residual Variances
X1 2.366 0.372 6.365 2.366 0.349
X2 2.277 0.383 5.940 2.277 0.323
X3 2.620 0.373 7.027 2.620 0.393
X4 0.662 0.117 5.668 0.662 0.177
X5 0.877 0.134 6.554 0.877 0.214
X6 0.956 0.139 6.866 0.956 0.229

R-SQUARE
Observed
Variable R-Square
X1 0.651
X2 0.677
X3 0.607
X4 0.823
X5 0.786
X6 0.771
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TABLE 7.2. Computer Syntax (LISREL, Mplus, EQS, CALIS, Amos) for
Specification of Tau-Equivalent Indicators of Auditory Memory within a Two-Factor
Measurement Model of Memory

LISREL 8.72

TITLE LISREL PROGRAM FOR TAU EQUIVALENT AUDITORY INDICATORS
DA NI=6 NO=200 MA=CM
LA
X1 X2 X3 X4 X5 X6
KM
1.000
0.661 1.000
0.630 0.643 1.000
0.270 0.300 0.268 1.000
0.297 0.265 0.225 0.805 1.000
0.290 0.287 0.248 0.796 0.779 1.000
SD
2.61 2.66 2.59 1.94 2.03 2.05
MO NX=6 NK=2 PH=SY,FR LX=FU,FR TD=DI
LK
AUDITORY VISUAL
PA LX
1 0
1 0
1 0
0 1
0 1
0 1
PA PH
0
1 0
VA 1.0 PH(1,1) PH(2,2)
EQ LX(1,1) LX(2,1) LX(3,1)              ! EQUALITY CONSTRAINT
OU ME=ML RS MI SC AD=OFF IT=100 ND=4

Mplus 3.11

TITLE:    MPLUS PROGRAM FOR TAU EQUIVALENT AUDITORY INDICATORS
DATA:     FILE IS “C:\input6.dat”;

TYPE IS STD CORR;
NOBS ARE 200;

VARIABLE: NAMES ARE X1-X6;
ANALYSIS: ESTIMATOR=ML;
MODEL:    AUDITORY BY X1* X2 X3 (1);  ! EQUALITY CONSTRAINT

VISUAL BY X4* X5 X6;
AUDITORY@1.0; VISUAL@1.0;

OUTPUT:   SAMPSTAT MODINDICES(4.00) STAND RESIDUAL;

EQS 5.7b

/TITLE
EQS SYNTAX FOR TAU EQUIVALENT AUDITORY INDICATORS

/SPECIFICATIONS
CASES=200; VARIABLES=6; METHODS=ML; MATRIX=COR; ANALYSIS=COV;

(cont.)
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TABLE 7.2. (cont.)

/LABELS
v1=logical; v2=verbal; v3=word; v4=faces; v5=family; v6=visrep;
f1 = auditory; f2 = visual;

/EQUATIONS
V1 = *F1+E1;
V2 = *F1+E2;
V3 = *F1+E3;
V4 = *F2+E4;
V5 = *F2+E5;
V6 = *F2+E6;

/VARIANCES
F1 TO F2 = 1.0;
E1 TO E6= *;

/COVARIANCES
F1 TO F2 = *;

/CONSTRAINT
(V1,F1) = (V2,F1) = (V3,F1);

/MATRIX
1.000
0.661 1.000
0.630 0.643 1.000
0.270 0.300 0.268 1.000
0.297 0.265 0.225 0.805 1.000
0.290 0.287 0.248 0.796 0.779 1.000
/STANDARD DEVIATIONS
2.61 2.66 2.59 1.94 2.03 2.05
/PRINT
fit=all;

/LMTEST
/END

SAS 8.2 PROC CALIS

Title “CALIS SYNTAX FOR TAU EQUIVALENT AUDITORY INDICATORS”;
Data WMS (type=CORR);
input _TYPE_ $ _NAME_ $ V1-V6;
label V1 = ‘logical’
V2 = ‘verbal’
V3 = ‘word’
V4 = ‘faces’
V5 = ‘family’
V6 = ‘visrep’;

cards;
mean  .    0      0      0      0      0      0
std  .  2.61   2.66   2.59   1.94   2.03   2.05
N  .  200    200    200    200    200    200

corr V1  1.000   .      .      .      .      .
corr V2  0.661  1.000   .      .      .      .
corr V3  0.630  0.643  1.000   .      .      .
corr V4  0.270  0.300  0.268  1.000   .      .
corr V5  0.297  0.265  0.225  0.805  1.000   .
corr V6  0.290  0.287  0.248  0.796  0.779  1.000

(cont.)
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TABLE 7.2. (cont.)
;
run;

proc calis data=WMS cov method=ml pall pcoves;
var = V1-V6;
lineqs
V1 = lam1 f1 + e1,
V2 = lam1 f1 + e2,
V3 = lam1 f1 + e3,
V4 = lam4 f2 + e4,
V5 = lam5 f2 + e5,
V6 = lam6 f2 + e6;

std
f1-f2 = 1.0,
e1-e6 = td1-td6;

cov
f1-f2 = ph3;

run;

Amos Basic 5.0

‘ Example of Tau Equivalence in Amos 5.0

Sub Main ()
Dim sem As New AmosEngine

sem.TextOutput
sem.Standardized
sem.Smc

sem.BeginGroup “memory.txt”

sem.Structure “x1 <— AUDITORY (lam1)”
sem.Structure “x2 <— AUDITORY (lam1)”
sem.Structure “x3 <— AUDITORY (lam1)”
sem.Structure “x4 <— VISUAL”
sem.Structure “x5 <— VISUAL”
sem.Structure “x6 <— VISUAL”

sem.Structure “x1 <— E1 (1)”
sem.Structure “x2 <— E2 (1)”
sem.Structure “x3 <— E3 (1)”
sem.Structure “x4 <— E4 (1)”
sem.Structure “x5 <— E5 (1)”
sem.Structure “x6 <— E6 (1)”

sem.Structure “AUDITORY (1)”
sem.Structure “VISUAL (1)”
sem.Structure “AUDITORY <—> VISUAL”

End Sub



AUDITORY BY X1* X2 X3 (1);

where parameters are constrained to be equal by placing the same number
in parentheses following the parameters that are to be held equal. An “*” is
placed directly after the X1 indicator to override the Mplus default of
setting the first indicator in the list as the marker indicator. This was
done because the metric of Auditory Memory was defined by fixing
its variance to 1.0. In EQS, the same constraints are imposed by adding
a /CONSTRAINT section to the command file as follows:

/CONSTRAINT
(V1, F1) = (V2,F1) = (V3,F1);

In CALIS, these constraints are made in the following lines:

V1 = lam1 f1 + e1,
V2 = lam1 f1 + e2,
V3 = lam1 f1 + e3,

in which the factor loadings for the first factor (f1; Auditory Memory) are
each given the same parameter name (lam1; the user may provide any
name for these or other model parameters). The same strategy is used in
Amos Basic (parameters held to equality given same label, lam1).

As shown in Table 7.3, this restriction results in an increase in χ2 to
5.66 with df = 10 (p = .84); for a more in-depth discussion of model esti-
mation under this equality constraint, see Appendix 7.1. This solution has
2 more dfs than the congeneric model (df = 8) because of the equality con-
straint on the factors loadings of Auditory Memory; that is, the congeneric
model contains three separate estimates of the X1, X2, and X3 factor load-
ings, and the tau-equivalent model contains one factor loading estimate
applied to each of these three indicators. The difference in χ2 of the cur-
rent solution and the congeneric solution is 0.78, with df = 2. Because this
χ2 difference is below the critical value of the χ2 distribution at df = 2 (i.e.,
χ2

crit = 5.99, at α = .05), it can be concluded that the three indicators of
Auditory Memory are tau equivalent; that is, a unit increase in the latent
construct of Auditory Memory is associated with the same amount of
change in each of the X1, X2, and X3 indicators. The selected Mplus out-
put provided below shows that these equality constraints apply to both the
unstandardized factor loadings and their standard errors (and hence the z
tests of significance as well).
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MODEL RESULTS
Estimates S.E. Est./S.E. Std StdYX

AUDITORY BY
X1 2.100 0.125 16.800 2.100 0.807
X2 2.100 0.125 16.800 2.100 0.804
X3 2.100 0.125 16.800 2.100 0.798

VISUAL BY
X4 1.756 0.108 16.183 1.756 0.907
X5 1.795 0.115 15.608 1.795 0.887
X6 1.796 0.117 15.378 1.796 0.878

Because this restriction of factor loading equality holds, it will be retained
in subsequent tests of the two-factor measurement model of memory.

Next, the model is respecified with the added constraint of holding
the factor loadings of Visual Memory to equality, to evaluate the tau equiv-
alence of these indicators. As seen in Table 7.3, this restriction also does
not significantly degrade the fit of the solution, χ2

diff(2) = 0.22, ns; there-
fore, the indicators of Visual Memory can also be considered to be tau
equivalent. Because tau equivalence has been established, the analysis can
proceed to evaluating the condition of parallel indicators.

The current example defined the metric of Auditory Memory and
Visual Memory by fixing their variances to 1.0. It is noteworthy that the
same results would be obtained if the unstandardized factor loadings of all
indicators were set to 1.0 (with the factor variances freely estimated). This
is because when an indicator is selected to be a marker, its unstandardized
loading is fixed to 1.0. Thus, if all factor loadings are to be tested for equal-
ity (tau equivalence), they must also equal the value of the marker (1.0).

In addition to tau equivalence, the condition of parallelism requires
that the error variances of indicators loading on the same factor are the
same. This added restriction is tested for Auditory Memory by placing
equality constraints on the measurement errors of X1, X2, and X3. The
findings presented in Table 7.3 show that this restriction does not result in
a significant increase in χ2, χ2

diff(2) = 0.09, ns. Finally, the results in this
table also indicate that the indicators of Visual Memory can be regarded as
parallel, χ2

diff(2) = 3.31, ns. The collective findings can be interpreted as
being consistent with the notion that X1–X3 and X4–X6 are interchange-
able indicators of the latent constructs of Auditory Memory and Visual
Memory, respectively.

For the reader’s information, the model estimates for the final solution
are presented in Table 7.4. Table 7.5 provides the programming syntax for
the final model in LISREL, Mplus, EQS, Amos, and CALIS. Before the dis-
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TABLE 7.4. Selected Mplus Results of the Final Two-Factor Measurement Model
of Memory

TESTS OF MODEL FIT

Chi-Square Test of Model Fit
Value 9.277
Degrees of Freedom 16
P-Value 0.9016

CFI/TLI
CFI 1.000
TLI 1.009

RMSEA (Root Mean Square Error Of Approximation)
Estimate 0.000
90 Percent C.I. 0.000 0.028
Probability RMSEA <= .05 0.989

SRMR (Standardized Root Mean Square Residual)
Value 0.027

MODEL RESULTS
Estimates S.E. Est./S.E. Std StdYX

AUDITORY BY
X1 2.099 0.125 16.795 2.099 0.803
X2 2.099 0.125 16.795 2.099 0.803
X3 2.099 0.125 16.795 2.099 0.803

VISUAL BY
X4 1.782 0.097 18.364 1.782 0.890
X5 1.782 0.097 18.364 1.782 0.890
X6 1.782 0.097 18.364 1.782 0.890

VISUAL WITH
AUDITORY 0.381 0.070 5.431 0.381 0.381

Variances
AUDITORY 1.000 0.000 0.000 1.000 1.000
VISUAL 1.000 0.000 0.000 1.000 1.000

Residual Variances
X1 2.427 0.172 14.142 2.427 0.355
X2 2.427 0.172 14.142 2.427 0.355
X3 2.427 0.172 14.142 2.427 0.355
X4 0.832 0.059 14.142 0.832 0.208
X5 0.832 0.059 14.142 0.832 0.208
X6 0.832 0.059 14.142 0.832 0.208

R-SQUARE
Observed
Variable R-Square
X1 0.645
X2 0.645
X3 0.645
X4 0.792
X5 0.792
X6 0.792
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TABLE 7.5. Computer Syntax (LISREL, Mplus, EQS, CALIS, Amos) for
Specification of Parallel Indicators of Auditory Memory and Visual Memory
within a Two-Factor Measurement Model of Memory

LISREL 8.72

TITLE LISREL PROGRAM FOR PARALLEL INDICATORS
DA NI=6 NO=200 MA=CM
LA
X1 X2 X3 X4 X5 X6
KM
<insert correlation matrix from Figure 7.1 here>
SD
2.61 2.66 2.59 1.94 2.03 2.05
MO NX=6 NK=2 PH=SY,FR LX=FU,FR TD=DI
LK
AUDITORY VISUAL
PA LX
1 0
1 0
1 0
0 1
0 1
0 1
PA PH
0
1 0
VA 1.0 PH(1,1) PH(2,2)
EQ LX(1,1) LX(2,1) LX(3,1)
EQ LX(4,2) LX(5,2) LX(6,2)
EQ TD(1,1) TD(2,2) TD(3,3)
EQ TD(4,4) TD(5,5) TD(6,6)
OU ME=ML RS MI SC AD=OFF IT=100 ND=4

Mplus 3.11

TITLE: MPLUS PROGRAM FOR PARALLEL INDICATORS
DATA: FILE IS “C:\input6.dat”;

TYPE IS STD CORR;
NOBS ARE 200;

VARIABLE: NAMES ARE X1-X6;
ANALYSIS: ESTIMATOR=ML;
MODEL: AUDITORY BY X1* X2 X3 (1);

VISUAL BY X4* X5 X6 (2);
AUDITORY@1.0; VISUAL@1.0;
X1 X2 X3 (3);
X4 X5 X6 (4);

OUTPUT: SAMPSTAT MODINDICES(4.00) STAND RESIDUAL;

EQS 5.7b

/TITLE
EQS SYNTAX FOR PARALLEL INDICATORS

/SPECIFICATIONS
CASES=200; VARIABLES=6; METHODS=ML; MATRIX=COR; ANALYSIS=COV;

(cont.)
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TABLE 7.5. (cont.)

/LABELS
v1=logical; v2=verbal; v3=word; v4=faces; v5=family; v6=visrep;
f1 = auditory; f2 = visual;

/EQUATIONS
V1 = *F1+E1;
V2 = *F1+E2;
V3 = *F1+E3;
V4 = *F2+E4;
V5 = *F2+E5;
V6 = *F2+E6;

/VARIANCES
F1 TO F2 = 1.0;
E1 TO E6= *;

/COVARIANCES
F1 TO F2 = *;

/CONSTRAINT
(V1,F1) = (V2,F1) = (V3,F1);
(V4,F2) = (V5,F2) = (V6,F2);
(E1, E1) = (E2, E2) = (E3, E3);
(E4, E4) = (E5, E5) = (E6, E6);

/MATRIX
<insert correlation matrix from Figure 7.1 here>
/STANDARD DEVIATIONS
2.61 2.66 2.59 1.94 2.03 2.05
/PRINT
fit=all;

/LMTEST
/END

SAS 8.2 PROC CALIS

Title “CALIS SYNTAX FOR PARALLEL INDICATORS”;
Data WMS (type=CORR);
input _TYPE_ $ _NAME_ $ V1-V6;
label V1 = ‘logical’
V2 = ‘verbal’
V3 = ‘word’
V4 = ‘faces’
V5 = ‘family’
V6 = ‘visrep’;

cards;
mean .   0     0     0     0     0     0
std . 2.61  2.66  2.59  1.94  2.03  2.05
N . 200   200   200   200   200   200

corr V1 1.000  .     .     .     .     .
corr V2 0.661 1.000  .     .     .     .
corr V3 0.630 0.643 1.000  .     .     .
corr V4 0.270 0.300 0.268 1.000  .     .
corr V5 0.297 0.265 0.225 0.805 1.000  .
corr V6 0.290 0.287 0.248 0.796 0.779 1.000
;
run;

(cont.)
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TABLE 7.5. (cont.)

proc calis data=WMS cov method=ml pall pcoves;
var = V1-V6;
lineqs
V1 = lam1 f1 + e1,
V2 = lam1 f1 + e2,
V3 = lam1 f1 + e3,
V4 = lam2 f2 + e4,
V5 = lam2 f2 + e5,
V6 = lam2 f2 + e6;

std
f1-f2 = 1.0,
e1-e3 = td1,
e4-e6 = td2;

cov
f1-f2 = ph3;

run;

Amos Basic 5.0

‘ Example of Parallel Indicators in Amos 5.0

Sub Main ()
Dim sem As New AmosEngine

sem.TextOutput
sem.Standardized
sem.Smc

sem.BeginGroup “memory.txt”
sem.Structure “x1 <— AUDITORY (lam1)”
sem.Structure “x2 <— AUDITORY (lam1)”
sem.Structure “x3 <— AUDITORY (lam1)”
sem.Structure “x4 <— VISUAL (lam2)”
sem.Structure “x5 <— VISUAL (lam2)”
sem.Structure “x6 <— VISUAL (lam2)”
sem.Structure “x1 <— E1 (1)”
sem.Structure “x2 <— E2 (1)”
sem.Structure “x3 <— E3 (1)”
sem.Structure “x4 <— E4 (1)”
sem.Structure “x5 <— E5 (1)”
sem.Structure “x6 <— E6 (1)”
sem.Structure “E1 (err1)”
sem.Structure “E2 (err1)”
sem.Structure “E3 (err1)”
sem.Structure “E4 (err2)”
sem.Structure “E5 (err2)”
sem.Structure “E6 (err2)”
sem.Structure “AUDITORY (1)”
sem.Structure “VISUAL (1)”
sem.Structure “AUDITORY <—> VISUAL”

End Sub



cussion continues with the next section, a couple of additional points are
made about the previous analyses. First, the nested χ2 procedure was
employed by comparing the model in question to the previous, slightly
less restricted solution; for example, a model in which the indicators of
both Auditory Memory and Visual Memory are held to be parallel versus
the model in which only the indicators of Auditory Memory are held paral-
lel. It should be noted that any two models presented in Table 7.3 are
nested and thus any less restricted solution could serve as the comparison
model. For instance, the final solution (in which both the indicators of
Auditory Memory and Visual Memory are parallel) could be tested against
the congeneric solution. In this case, the χ2

diff value would be 4.40 with df
= 8; that is, χ2 = 9.28 – 4.88 = 4.40, df = 16 – 8 = 8. This comparison would
produce the equivalent result that the fully parallel model did not signifi-
cantly degrade the fit of the solution because the χ2 difference of 4.40 is
less than the critical value of the χ2 distribution at df = 8 (i.e., χ2

crit = 15.51,
at α = .05). It might appear that it would be more efficient to move straight
from the congeneric model to the most restrictive solution. However, the
conditions of tau-equivalent and parallel indicators often do not hold in
applied data sets (in particular, the condition of parallel indicators is quite
restrictive). Thus, it is usually better to employ an incremental strategy
that will allow one to more readily detect the sources on noninvariance if
significant degradations in model fit are encountered, because the restric-
tions are placed on a single set of parameters at a time rather than all at
once.

Second, in the case of a multifactorial, congeneric solution, the evalu-
ation of tau-equivalent and parallel indicators of one factor does not rely
on the respective findings for indicators loading on different factors. For
instance, if the condition of tau equivalence for the indicators of Auditory
Memory was not met (i.e., these equality constraints led to a significant
increase in model χ2), the researcher could still proceed to evaluating
whether the indicators of Visual Memory were tau equivalent and parallel.

Longitudinal Measurement Invariance

Another type of invariance evaluation that can be conducted on CFA mod-
els within a single group concerns the equality of construct measurement
over time. Although rarely addressed in the applied literature, longitudinal
measurement invariance is a fundamental aspect of evaluating temporal
change in a construct. In the absence of such evaluation, it cannot be
determined whether temporal change observed in a construct is due to
true change or to changes in the structure or measurement of the construct
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over time. Drawing on the work of Golembiewski, Billingsley, and Yeager
(1976), Chan (1998) outlined three types of change that may be encoun-
tered in repeated measurements: alpha, beta, and gamma change (these
terms do not correspond to parameters of structural equation models).
Alpha change refers to true score change in a construct given a constant
conceptual domain and constant measurement. Alpha change (true score
change) can only be said to occur in the context of longitudinal measure-
ment invariance (i.e., evidence that the measurement of the construct does
not change over time). Chan (1998) notes that longitudinal measurement
invariance can be construed as an absence of beta and gamma change. Beta
change occurs in instances where the construct of interest remains con-
stant, but the measurement properties of the indicators of the construct are
temporally inconsistent (e.g., numerical values across assessment points
are not on the same measurement scale). Gamma change occurs when the
meaning of the construct changes over time (e.g., the number of factors
that represent the construct vary across assessment waves). In applied lon-
gitudinal research, measurement invariance is often simply (implicitly)
assumed and not examined. However, when measurement is not invariant
over time, it is misleading to analyze and interpret the temporal change in
observed measures or latent constructs; that is, change may be misinter-
preted as alpha change when in fact the precision of measurement of the
construct, or the construct itself, varies across time. Thus, the examina-
tion of measurement invariance should precede applications of SEM
procedures with longitudinal data (e.g., latent growth curve models,
autoregressive/cross-lagged panel models; Bollen & Curran, 2004; Curran
& Hussong, 2003; Duncan, Duncan, Strycker, Li, & Alpert, 1999).

These procedures are illustrated using the longitudinal measurement
model presented in Figure 7.2. In this example, the researcher wishes to
evaluate whether an intervention was successful in improving employees’
job satisfaction. Employees (N = 250) of a large company were adminis-
tered four measures of job satisfaction (Measures A–D, which varied in
assessment modality, e.g., questionnaires, supervisor ratings) immediately
before and after the intervention (the pre- and posttest interval was 4
weeks). For each measure, higher scores reflect higher job satisfaction.
Prior to examining whether the intervention resulted in an overall increase
in job satisfaction, the researcher wishes to verify that the construct of job
satisfaction, and its measurement, remain stable over time.

Figure 7.2 presents the hypothesized path model in which the con-
struct of job satisfaction is posited to be structurally the same (i.e.,
unidimensional) at both assessment points (cf. gamma change). If the fac-
tor structure is temporally equivalent, additional tests can be performed to
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examine the other aspects of measurement invariance (e.g., equality of fac-
tor loadings) in a manner similar to the procedures used for evaluating
tau-equivalent and parallel indicators. In addition, note that correlated
errors have been specified for each pair of repeated measures (e.g., the
residual of indicator A1 is allowed to freely covary with the residual of
indicator A2). Recall from earlier chapters (e.g., Chapter 2) that the
uniqueness of an indicator is comprised of some combination of random
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Sample Correlations, Means (M), and Standard Deviations (SD); N = 250

A1 B1 C1 D1 A2 B2 C2 D2

A1 1.000
B1 0.736 1.000
C1 0.731 0.648 1.000
D1 0.771 0.694 0.700 1.000
A2 0.685 0.512 0.496 0.508 1.000
B2 0.481 0.638 0.431 0.449 0.726 1.000
C2 0.485 0.442 0.635 0.456 0.743 0.672 1.000
D2 0.508 0.469 0.453 0.627 0.759 0.689 0.695 1.000

M: 1.500 1.320 1.450 1.410 6.600 6.420 6.560 6.310
SD: 1.940 2.030 2.050 1.990 2.610 2.660 2.590 2.550

FIGURE 7.2. Longitudinal measurement model of job satisfaction. Indicators A
through D are various measures (e.g., questionnaires, supervisor ratings) of job
satisfaction. Rectangles denote within-time portions of the input correlation
matrix.



measurement error and indicator-specific variance. Specification of corre-
lated errors is based on the premise that these indicator-specific variances
are temporally stable. For instance, such parameters might be posited to
reflect method effects associated with repeated administrations of the same
measure (e.g., in addition to the underlying dimension of job satisfaction,
some of the variance in the A indicator is due to the influence of social
desirability, present at each testing occasion). Depending on the research
scenario, it may or may not be necessary to specify autocorrelations among
indicators’ error variances; for example, these effects may be less likely evi-
dent in designs employing wide assessment intervals or monomethod indi-
cators.

It should be noted that longitudinal measurement invariance can also
be evaluated using the multiple-group approach discussed later in this
chapter; that is, each “group” is represented by a different wave of assess-
ment (e.g., Group 1 = Time 1, Group 2 = Time 2). In reviewing the mea-
surement invariance literature, Vandenberg and Lance (2000) discussed
the advantages and disadvantages of assessing longitudinal measurement
invariance using a single sample (all assessment waves combined in a sin-
gle input matrix) versus a multiple-group approach (assessment waves
represented by separate input matrices for each “group”). The one-sample
approach takes into account the complete data structure; that is, the
lagged relationships among indicators in addition to the within-time
covariances. The entire matrix presented in Figure 7.2 is used in the analy-
sis including the between-time correlations, such as A1 with A2, B2, C2,
and D2. In the multiple-group approach, only the within-time portions of
the matrix (denoted by boxes in Figure 7.2) are input to the analysis (each
box represents a different “group”). Accordingly, a primary advantage of
employing a one-sample approach is that correlated errors of the repeated
measurements can be estimated and controlled for in the estimation of
other model parameters. The main disadvantage of the single-sample
method pertains to the use of an input matrix larger than that used in the
multiple-group approach (cf. Figure 7.2). Because a larger matrix is used
as input, the single-sample approach may be more prone to poor model fit
or possibly improper solutions resulting from the greater complexity of the
model (cf. Chapter 5).

The longitudinal measurement example is also used to introduce the
reader to the analysis of mean structures. All examples been presented in
this book thus far have entailed the analysis of covariance structures. That
is, only variances and covariances have been included in the input matrix,
and thus the indicators and resulting model parameters were deviations
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from their means (i.e., their means are presumed to be zero). For example,
as with coefficients in multiple regression, a factor loading can be inter-
preted as the amount of predicted change in an indicator (the Y variable)
given a unit change in the latent factor (the X variable). These coefficients
do not reflect the exact predicted score of the Y variable, but estimate how
much this variable is predicted to change, given a unit change in X. How-
ever, a typical application of multiple regression involves the prediction of
specific scores of the Y variable, as shown in the simple regression equa-
tion below:

�Y = a + bX (7.1)

where �Y is the predicted Y score; a is the intercept; b is the unstandardized
regression coefficient; and X is a given score of the predictor variable. The
actual (observed value) of Y can be reproduced by adding the residual (e)
to the sum of a + bX:

Y = a + bX + e (7.2)

A basic equation in regression solves for the intercept (a) on the basis of
knowledge of the sample means of X and Y (My, Mx) and the regression
coefficient (b):

a = My – bMx (7.3)

Through a simple algebraic manipulation, this formula can be reexpressed
as

My = a + bMx (7.4)

A fundamental difference between these equations and the equations pre-
sented in the context of CFA thus far is its inclusion of the intercept
parameter. In the multiple regression framework, the intercept represents
the position where the least squares regression line crosses the Y axis; that
is, the predicted value of Y when all X variables are zero. In Chapter 3 (Eq.
3.4), it was shown that the observed variance of an indicator could be cal-
culated from the model estimates of a covariance structure CFA using the
formula (Latent X notation)

VAR(X) = λx
2φ + δ (7.5)
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where λx is the unstandardized factor loading; φ is the factor variance; and
δ is the indicator’s error variance. With the exception of the intercept
parameter, this equation is very similar to the previous regression equation
(e.g., λx = b; δ = e).

The equations of CFA can be expanded to include intercept (and
latent mean) parameters; for example,

X = τx + Λxξ + θδ (7.6)

where τx is the indicator intercept (τx = tau X; cf. Figure 3.3 in Chapter 3).
Similarly, the CFA equivalent to the equation, My = a + bMx, is

Mx = τx + λxκ (7.7)

where κ is the mean of the latent exogenous factor (κ = kappa; cf. Figure
3.3 in Chapter 3). Thus, the mean of a given indicator (Mx) can be repro-
duced by the CFA model’s parameter estimates of the indicator’s intercept
(τx), factor loading (λx), and latent factor mean (κ).

Later in this chapter it will be shown that, like marker indicators and
latent factor variances, indicator intercepts (means) and latent factor
means are closely related. In addition, the analysis of mean structure poses
new identification issues that can be addressed in different ways in the
single- and multiple-group approaches.

Returning to the example of longitudinal measurement invariance,
this analysis can be conducted with or without the inclusion of mean
structures. For instance, if the ultimate goal is to examine models based on
a covariance structure (e.g., as in autoregressive/cross-lagged panel model-
ing), the analysis of mean structures is less relevant. However, if the goal is
to examine the trajectory of change in the level of a given construct (e.g.,
as in latent growth curve modeling), the measurement invariance evalua-
tion should include the analysis of indicator means; that is, the compari-
son of means is meaningful only if the factor loadings and measurement
intercepts are found to be invariant.

The first step of the longitudinal analysis of job satisfaction is to estab-
lish that the same factor structure is present at both testing occasions
(equal form). As shown in Figure 7.2, it is predicted that a unidimensional
measurement model of job satisfaction is viable at both assessment points.
Correlated errors were specified in anticipation that additional covari-
ance would exist between repeated measures owing to temporally stable
indicator-specific variance (method effects). The metric of the latent fac-
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tors was defined by using the same observed measure at both testing occa-
sions (A1 and A2) as the marker indicator.

The estimation of indicator intercepts and factor means requires that
the observed means of the indicators be included as input data. Thus, the
number of elements of the input matrix increases by the number of indica-
tor means that are included in the analysis; that is,

b = [p(p + 1) / 2] + p (7.8)

where b is the number of elements of the input matrix and p is the number
of indicators. Thus, in the current example (p = 8 indicators), there are 36
variances and covariances [p(p + 1) / 2] and 8 means (p), totaling to 44 ele-
ments of the input matrix; Eq. 7.8 can be alternatively written as b = [p(p +
3)] / 2. Although this exceeds the number of freely estimated parameters
of the equal form solution, the mean structure portion of the solution is
underidentified in the absence of other model restrictions. In this example,
there are 8 observed means (knowns) but 10 unknown parameters in the
CFA mean structure (8 indicator intercepts, 2 latent factor means). Hence,
this aspect of the model is underidentified because the number of un-
knowns exceeds the number of knowns (cf. Chapter 3). Moreover, just as
latent variables must be provided a metric (e.g., by fixing the loading of an
indicator to 1.0), they must also be assigned an origin (i.e., a mean). In
covariance structure analysis, the latent variable means are assumed to be
zero. In mean structure analysis, where the latent variables may take on
mean values other than zero, origins must be assigned. In a single-sample
analysis, the mean structure aspect of the measurement model may be
identified in one of two ways: (1) fixing the latent mean to zero; or (2)
assigning the factor mean to take on the mean as one of its indicators (by
fixing the intercept of one indicator to zero). In the first method, all the
indicator intercepts are freely estimated but will equal the observed means
of the indicators. In the second strategy, all but one intercept is freely esti-
mated and these freed intercepts will take on values different from
their sample means; the factor mean is freely estimated but will equal
the observed mean of the indicator whose intercept was fixed to zero.
The restrictions associated with both approaches will result in just-
identification of the mean structure portion of the solution. In either
approach, additional restrictions can be placed on the model to over-
identify its mean structure component (e.g., equality constraints on indi-
cator intercepts). Later in this chapter, a slightly different method is used
to identify the mean structure of a multiple-groups CFA solution.
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In the current example, Indicator A’s intercept was fixed to zero at both
testing occasions. Consequently, in the initial, less constrained solutions
(e.g., the test of equal factor structure), the mean of the latent factor of Job
Satisfaction was equal to the observed mean of Indicator A. In addition, these
restrictions led to just-identification of the mean structure aspect of the solu-
tion; that is, 8 observed means; 8 freely estimated mean parameters = 6 inter-
cepts + 2 latent factor means. Thus, although the input matrix is expanded to
include indicator means, the overall model df is the same as in covariance
structure analysis (df = 15) because the mean structure component does not
provide additional degrees of freedom to the model (df = 8 – 8 = 0).

Selected results of the equal form (factor structure) solution are pre-
sented in Table 7.6. The overall fit of this solution is presented in Table 7.7.
All results are in accord with the conclusion that a unidimensional measure-
ment model of Job Satisfaction is viable at both testing occasions. Each of the
overall fit statistics is consistent with good model fit, for example, χ2(15) =
2.09, p = 1.0, and fit diagnostics indicate the absence of significant areas of
strain in the solution (e.g., all modification indices < 4.0). At both assess-
ments, the indicators are found to be significantly (ps < .001) and strongly
related to the latent construct of Job Satisfaction (range of completely stan-
dardized factor loadings = .81 to .90). In addition, the four error covariances
are statistically significant (ps < .001); completely standardized values range
in magnitude from .14 to .195. The test–retest covariance of the latent con-
struct of Job Satisfaction is statistically significant (φ21 = 2.68, p < .001). As
noted above, the intercept of Indicator A was fixed to zero at both assess-
ments in order to identify the mean structure component of the solution.
This is reflected by the values of 0.00 for all estimates of A1 and A2 in the
Intercepts portion of the model results. As the result of these restrictions, the
latent means of Job Satisfaction equal the observed means of the A1 and A2
indicators (1.5 and 6.6 for SATIS1 and SATIS2, respectively; cf. Table 7.6 and
Figure 7.2). To illustrate an equation presented earlier in this chapter, the
sample mean of the indicators can be reproduced by inserting the appropri-
ate model estimates into Equation 7.7. For instance, the sample mean of
B1 = 1.32 and can be reproduced using the model estimates of its intercept
(τ1 = –0.107), unstandardized factor loading (λ21 = 0.951), and the mean of
its latent factor (κ = 1.5):

–0.107 + 0.951(1.5) = 1.32 (7.9)

Given evidence of equal form (cf. gamma change), additional tests of
longitudinal measurement invariance may proceed. The next analysis tests
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TABLE 7.6. Mplus Results of the Equal Form Longitudinal Model
of Job Satisfaction

MODEL RESULTS

Estimates S.E. Est./S.E. Std StdYX
SATIS1 BY

A1 1.000 0.000 0.000 1.728 0.899
B1 0.951 0.050 19.212 1.643 0.811
C1 0.970 0.049 19.616 1.676 0.814
D1 0.990 0.046 21.394 1.710 0.859

SATIS2 BY
A2 1.000 0.000 0.000 2.327 0.896
B2 0.916 0.048 18.973 2.131 0.808
C2 0.922 0.046 20.085 2.144 0.828
D2 0.934 0.045 20.770 2.173 0.849

SATIS2 WITH
SATIS1 2.680 0.353 7.586 0.667 0.667

A1 WITH
A2 0.701 0.119 5.915 0.701 0.141

B1 WITH
B2 1.043 0.163 6.407 1.043 0.195

C1 WITH
C2 1.042 0.158 6.576 1.042 0.195

D1 WITH
D2 0.770 0.134 5.735 0.770 0.151

Means
SATIS1 1.500 0.122 12.343 0.868 0.868
SATIS2 6.600 0.164 40.183 2.836 2.836

Intercepts
A1 0.000 0.000 0.000 0.000 0.000
B1 -0.107 0.117 -0.910 -0.107 -0.053
C1 -0.005 0.118 -0.042 -0.005 -0.002
D1 -0.075 0.108 -0.692 -0.075 -0.038
A2 0.000 0.000 0.000 0.000 0.000
B2 0.375 0.340 1.102 0.375 0.142
C2 0.477 0.324 1.475 0.477 0.184
D2 0.146 0.316 0.462 0.146 0.057

(cont.)



for the equality of factor loadings over the two assessment points. Unlike
the evaluation of tau equivalence, this analysis does not constrain the indi-
cators that load on the same factor to equality (e.g., λ21 = λ31 = λ41). Rather,
the equality constraint pertains to the factor loadings of indicators admin-
istered repeatedly across testing occasions (e.g., λ21 = λ62). As in the analy-
sis of tau equivalence, the nested χ2 test can be employed to determine
whether these constraints significantly degrade model fit. As shown in
Table 7.7, the model χ2 of the equal loadings solution is 3.88 (df = 18, p =
1.0), resulting in a nonsignificant χ2 difference test, χ2

diff (3) = 1.79, ns;
[critical value of χ2(3) = 7.81, α = .05]. The df of this nested model com-
parison is equal to 3 (and the equal factor loadings model df = 18) because
only three pairs of factor loadings (B1 = B2; C1 = C2; D1 = D2) are
involved in this equality constraint; that is, does not apply to the loadings
of A1 and A2 because these parameters were previously fixed to 1.0 to set
the scale of the latent factors.

On the basis of the results of the equal factor loading analysis, it can
be concluded that the indicators evidence equivalent relationships to the
latent construct of Job Satisfaction over time. Keeping the equality con-
straints of the factor loadings in place, the next model placed additional
equality constraints on the indicators’ intercepts, except for indicators A1
and A2, whose intercepts were previously fixed to zero for the purposes of
model identification. These restrictions also did not lead to a significant
reduction in model fit, χ2

diff (3) = 3.37, ns, suggesting that the indicator’s
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TABLE 7.6. (cont.)

Variances
SATIS1 2.985 0.321 9.297 1.000 1.000
SATIS2 5.414 0.586 9.244 1.000 1.000

Residual Variances
A1 0.707 0.105 6.722 0.707 0.192
B1 1.409 0.153 9.178 1.409 0.343
C1 1.434 0.157 9.137 1.434 0.338
D1 1.038 0.127 8.165 1.038 0.262
A2 1.330 0.195 6.815 1.330 0.197
B2 2.418 0.263 9.183 2.418 0.347
C2 2.113 0.239 8.856 2.113 0.315
D2 1.836 0.219 8.390 1.836 0.280
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intercepts were invariant between the two testing occasions. Recall that in
multiple regression, an intercept can be regarded as the predicted value of
Y when X is at zero. Measurement intercepts in CFA can be interpreted in
an analogous manner; that is, τx = the predicted value of indicator X when
κ = 0. Thus, if the intercept of an indicator is found to be temporally
noninvariant, the predicted score of the indicator will vary across time at a
constant level of the latent construct (i.e., κ1 = κ2). Stated another way,
even when the “true score” (latent factor) remains unchanged, the ob-
served scores of the indicators will vary over time. Thus, it is erroneous to
interpret changes in observed scores as true change (alpha change),
because the observed change is due in some part to temporal variation in
the measurement properties of the indicator. For example, although factor
loading equivalence would suggest the indicator possesses a temporally
stable relationship to the underlying construct (i.e., a unit increase in the
latent construct is associated with comparable changes in the indicator at
all assessment points), noninvariant indicator intercepts would suggest
inequality of the indicator’s location parameters over time (a spurious shift
from using one portion of the indicator’s response scale at Time 1 to
another portion of the response scale at Time 2, as might occur in various
forms of rater drift such as leniency bias; cf. Vandenberg & Lance, 2000).
However, in the present illustration both the factor loadings and indicator
intercepts were found to be invariant, suggesting the analysis of mean
change over time can be attributed to true change in the construct (cf. Eq.
7.7).

The final analysis tests for the equality of the indicator’s error vari-
ances. Table 7.8 provides Mplus and LISREL syntax for this analysis. This
restriction results in a significant decrease in model fit, χ2

diff (4) = 83.48,
p < .001 (critical χ2 value at df = 4, α = .05, is 9.49). Fit diagnostics suggest
that each indicator’s error variance is temporally noninvariant:

MODEL MODIFICATION INDICES

Variances/Residual Variances

M.I. E.P.C. Std E.P.C. StdYX E.P.C.
A1 35.185 -0.421 -0.421 -0.108
B1 24.357 -0.579 -0.579 -0.125
C1 15.381 -0.421 -0.421 -0.093
D1 23.308 -0.459 -0.459 -0.112
A2 35.187 0.474 0.474 0.076
B2 24.358 0.602 0.602 0.087
C2 15.381 0.442 0.442 0.065
D2 23.307 0.483 0.483 0.078
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TABLE 7.8. Computer Syntax (LISREL, Mplus) for Testing a Fully Invariant Longitudinal
Measurement Model of Job Satisfaction (Equal Form, Equal Factor Loadings, Equal
Intercepts, Equal Residual Variances)

Mplus 3.11

TITLE:     MPLUS PROGRAM FOR TIME1-TIME2 MSMT MODEL OF JOB SATISFACTION
DATA:      FILE IS “C:\INPUT.dat”;

TYPE IS MEANS STD CORR; ! INDICATOR MEANS ALSO INPUTTED
NOBS ARE 250;

VARIABLE:  NAMES ARE A1 B1 C1 D1 A2 B2 C2 D2;
ANALYSIS:  ESTIMATOR=ML;

TYPE=MEANSTRUCTURE; ! ANALYSIS OF MEAN STRUCTURE
MODEL:     SATIS1 BY A1 B1 (1)

C1 (2)
D1 (3);
SATIS2 BY A2 B2 (1)
C2 (2)
D2 (3);
A1 WITH A2; B1 WITH B2; C1 WITH C2; D1 WITH D2;
[A1@0]; [A2@0]; ! FIXES THE A INDICATOR INTERCEPTS TO ZERO
[SATIS1*]; [SATIS2*]; ! FREELY ESTIMATES FACTOR MEANS
[B1 B2] (4); [C1 C2] (5); [D1 D2] (6);
A1 A2 (7); B1 B2 (8); C1 C2 (9); D1 D2 (10);

OUTPUT:    SAMPSTAT MODINDICES(4.00) STAND RESIDUAL;

LISREL 8.72

TITLE LISREL PROGRAM FOR TIME1-TIME2 MSMT MODEL OF JOB SATISFACTION
DA NI=8 NO=250 MA=CM
LA
A1 B1 C1 D1 A2 B2 C2 D2
KM
1.000
0.736 1.000
0.731 0.648 1.000
0.771 0.694 0.700 1.000
0.685 0.512 0.496 0.508 1.000
0.481 0.638 0.431 0.449 0.726 1.000
0.485 0.442 0.635 0.456 0.743 0.672 1.000
0.508 0.469 0.453 0.627 0.759 0.689 0.695 1.000
ME                                       ! MEANS INCLUDED AS INPUT
1.50 1.32 1.45 1.41 6.60 6.42 6.56 6.31
SD
1.94 2.03 2.05 1.99 2.61 2.66 2.59 2.55
MO NX=8 NK=2 PH=SY,FR LX=FU,FR TD=SY,FR TX=FR KA=FR    ! TAU-X AND KAPPA
LK
SATIS1 SATIS2
PA LX
0 0
1 0

(cont.)
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TABLE 7.8. (cont.)

1 0
1 0
0 0
0 1
0 1
0 1
VA 1.0 LX(1,1) LX(5,2)          ! SET THE METRIC OF THE LATENT VARIABLES
PA TD
1
0 1
0 0 1
0 0 0 1
1 0 0 0 1                       ! OFF-DIAGONAL 1s ARE CORRELATED ERRORS
0 1 0 0 0 1
0 0 1 0 0 0 1
0 0 0 1 0 0 0 1
PA PH
1
1 1
FI TX(1) TX(5)
VA 0.0 TX(1) TX(5)              ! FIX INDICATOR A INTERCEPTS TO ZERO
EQ LX(2,1) LX(6,2)              ! FACTOR LOADING EQUALITY CONSTRAINT
EQ LX(3,1) LX(7,2)              ! FACTOR LOADING EQUALITY CONSTRAINT
EQ LX(4,1) LX(8,2)              ! FACTOR LOADING EQUALITY CONSTRAINT
EQ TX(2) TX(6)                  ! INTERCEPT EQUALITY CONSTRAINT
EQ TX(3) TX(7)                  ! INTERCEPT EQUALITY CONSTRAINT
EQ TX(4) TX(8)                  ! INTERCEPT EQUALITY CONSTRAINT
EQ TD(1,1) TD(5,5)              ! ERROR VARIANCE EQUALITY CONSTRAINT
EQ TD(2,2) TD(6,6)              ! ERROR VARIANCE EQUALITY CONSTRAINT
EQ TD(3,3) TD(7,7)              ! ERROR VARIANCE EQUALITY CONSTRAINT
EQ TD(4,4) TD(8,8)              ! ERROR VARIANCE EQUALITY CONSTRAINT
OU ME=ML RS MI SC AD=OFF IT=100 ND=4

Note. In Mplus, there can be only one number in parentheses on each line. Recall that parameters
that are followed by the same number in parentheses are constrained to be equal. Thus, the syntax
(1), (2), and (3) hold the factor loadings of B1 and B2, C1 and C2, and D1 and D3 to equality
(although A1 and A2 are on the same line as B1 and B2, these parameters are not constrained to
equality because they have been fixed to 1.0 by Mplus default). The Mplus language uses brackets,
[ ], to represent indicator intercepts and factor means. Thus, the command [B1 B2] (4) holds the
intercepts of indicators B1 and B2 to equality. The last line on the MODEL: section of the syntax,
for example, A1 A2 (7), instructs the analysis to constrain the indicator error variances to equality.



Heterogeneity of variance is a common outcome in repeated measures
designs, such as the current example. Thus, the test of equal residual vari-
ances usually fails in actual data sets because of the temporal fanspread of
indicator variances. In the present context, this could be reflective of indi-
vidual differences in response to the intervention to improve job satisfac-
tion. That is, at Time 1 the variances were more homogeneous because
individuals were more similar with regard to their level of job satisfaction.
By Time 2, individual differences were more pronounced because some
participants responded favorably to the intervention whereas others did
not. This is reflected in the input matrix, where it can be seen that the SDs
increase in magnitude from Time 1 to Time 2 (in addition to the Ms, which
reflect overall improvement in satisfaction). Accordingly, methodologists
concede that the test of equal indicator residual variances is highly strin-
gent and will rarely hold in realistic data sets (e.g., Chan, 1998). Fortu-
nately, this condition is not as important to the evaluation of measurement
invariance as the prior tests (equal form, factor loadings, and intercepts).

CFA IN MULTIPLE GROUPS

Overview of Multiple-Groups Solutions

The themes introduced in this chapter are now extended to the simulta-
neous analysis of more than one group. As noted in previous chapters, one
of the major advantages of CFA over EFA is its capability to examine the
equivalence of all measurement and structural parameters of the factor
model across multiple groups. The measurement model pertains to the
measurement characteristics of the indicators (observed measures) and
thus consists of the factor loadings (lambda), intercepts (tau), and residual
variances (theta). Hence, the evaluation of across-group equivalence of
these parameters reflects tests of measurement invariance. The structural
parameters of the CFA model involve evaluation of the latent variables
themselves, and thus consist of the factor variances (phi), covariances
(phi), and latent means (kappa). If latent-Y terminology is used, the corre-
sponding matrices would be psi and alpha (cf. Figure 3.4, Chapter 3).
These parameters describe characteristics of the population from which
the sample was drawn. Thus, the examination of the group concordance of
structural parameters can be considered tests of population heterogeneity;
that is, do the dispersion, interrelationships, and levels of the latent factors
vary across groups?
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CFA with multiple groups has many potential practical applications.
For instance, the issues addressed in measurement invariance evaluation
are key to the psychometric development of psychological tests; for exam-
ple, do the items of a questionnaire measure the same constructs (same
factor structure) and evidence equivalent relationships to these constructs
(equal factor loadings) in all subgroups of the population for whom the
measure will be used? Or are there sex, ethnic/racial, age, or other sub-
group differences that preclude responding to the questionnaire in compa-
rable ways? Does the questionnaire contain items that are biased against a
particular subgroup; that is, yield substantially higher or lower observed
scores in a group at equivalent levels of the latent or “true” score? The
evaluation of measurement invariance is also important to determining the
generalizability of psychological constructs across groups; for example,
does the construct underlying the formal definition of a given psychiatric
diagnosis operate equivalently across cultures, sexes, age groups, and so
forth? Tests of structural parameters reveal potential group differences
adjusting for measurement error and an error theory. For example, tests of
equality of factor covariances can be construed as the CFA counterpart to
inferential evaluation of the differential magnitude of independent correla-
tions; that is, are two constructs more strongly correlated in one group
than another? Tests of the equality of latent means are analogous to the
comparison of observed group means via t-test or ANOVA. However, the
major strength of the CFA-based approach is that such comparisons are
made in the context of a latent variable measurement model, which hence
adjusts for measurement errors, correlated residuals, and so forth.

Two methods can be used to evaluate CFA solutions in multiple
groups: (1) multiple-groups CFA; and (2) MIMIC modeling. Multiple-groups
CFA entails the simultaneous analysis of CFA in more than one group. For
instance, if the analysis involves two groups (e.g., males and females), two
separate input matrices are analyzed and constraints can be placed on like
parameters (e.g., factor loadings) in both groups to examine the equiva-
lence of the measurement (measurement invariance) and structural solu-
tion (population heterogeneity). Although somewhat underutilized in
applied research (cf. Vandenberg & Lance, 2000), multiple-groups CFA
can entail the analysis of mean structures to evaluate the equality of indi-
cator intercepts (measurement invariance) and latent means (population
heterogeneity). A key advantage of multiple-groups CFA is that all aspects
of measurement invariance and population heterogeneity can be examined
(i.e., factor loadings, intercepts, residual variances, factor variances, factor
covariances, latent means).
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Conversely, MIMIC models entail the analysis of a single covariance
matrix that, in addition to the indicators, includes the dummy code(s) that
convey group membership. MIMIC, an acronym for “multiple indicators,
multiple causes,” has also been referred to as CFA with covariates. In this
approach, both the latent factors and indicators are regressed onto dummy
code(s) that denote group membership. A significant direct effect of the
dummy code (covariate) on the latent factor indicates population hetero-
geneity (group differences on latent means) and a significant direct effect
of the dummy code on an indicator is evidence of measurement non-
invariance (group differences on the indicator’s intercept, i.e., differential
item functioning). Because a single input matrix is used, the advantages of
MIMIC models over multiple-groups CFA include their greater parsimony
(MIMIC entails fewer freely estimated parameters), their relatively greater
ease of implementation when several groups are involved (i.e., depending
on the complexity of the measurement model, multiple-groups CFA may
be cumbersome when the number of groups exceeds two), and their less
restrictive sample size requirements (i.e., multiple-groups CFA requires a
sufficiently large sample size for each group). However, the key limitation
of MIMIC models relative to multiple-groups CFA is their ability to exam-
ine just two potential sources of invariance (indicator intercepts, factor
means).

Multiple-Groups CFA

Before considering how multiple-groups CFA is implemented, it is impor-
tant to be aware of the variability in terminologies and procedures within
the methodology literature. As noted above, an advantage of multiple-
groups CFA is that all potential aspects of invariance across groups can be
examined. Different terminologies exist in the literature for these various
tests of invariance (cf. Horn & McArdle, 1992; Meredith, 1993). For
example, the test of equal factor structures (“equal form,” meaning that
the number of factors and pattern of indicator–factor loadings is identical
across groups) has been referred to as “configural invariance.” Equality of
factor loadings has been referred to as “metric invariance” or “weak facto-
rial invariance.” The equality of indicator intercepts has been alternatively
termed “scalar invariance” or “strong factorial invariance.” Finally, evalua-
tion of the equality of indicator residuals has also been referred to as a test
of “strict factorial invariance” (Meredith, 1993). Some confusion sur-
rounds the use of these varying terminologies (cf. Vandenberg & Lance,
2000). For this reason, a more descriptive and pedagogically useful termi-
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nology is encouraged and used in this book (e.g., equal form, equal factor
loadings, equal intercepts).

Moreover, there are some discrepancies in the order in which the
model restrictions within multiple-groups CFA are evaluated. Most com-
monly, the stepwise procedures previously illustrated in the tests of longi-
tudinal invariance are employed, whereby the analysis begins with the
least restricted solution (equal form) and subsequent models are evaluated
(using nested χ2 methods) that entail increasingly restrictive constraints;
that is, equal factor loadings → equal intercepts → equal residual vari-
ances, and so on. However, some methodologists (e.g., Horn & McArdle,
1992) have proffered a “step-down” strategy whereby the starting model
contains all the pertinent invariance restrictions, and subsequent models
are then evaluated that sequentially relax these constraints. The former
approach is recommended for several reasons. Especially in the context of
a complex CFA solution (i.e., multiple factors and indicators; > 2 groups),
it may be difficult to determine the (multiple) sources of noninvariance
when a model held to full invariance is poor fitting. Any aspects of ill fit
that are encountered are more easily identified and adjusted for in a
model-building approach, where new restrictions are placed on the solu-
tion at each step. In addition, tests of some aspects of invariance rest on
the assumption that other aspects of invariance hold. Group comparisons
of latent means are meaningful only if the factor loadings and indicator
intercepts have been found to be invariant (see the “Longitudinal Measure-
ment Invariance” section). Group comparisons of factor variances and
covariances are meaningfully only when the factor loadings are invariant.
The viability of the fully constrained model rests on the results of the less
restricted solutions. Thus, it is more prudent for model evaluation to work
upward from the least restricted solution (equal form) to determine if fur-
ther tests of measurement invariance and population heterogeneity are
warranted. Of relevance here is the issue of partial invariance. As discussed
later in this chapter, it may be possible for the evaluation of group equiva-
lence to proceed even in instances where some noninvariant parameters
have been encountered (cf. Byrne et al., 1989). For instance, it may be pos-
sible to compare groups on latent means if some (but not all) of the factor
loadings and intercepts are invariant. Again, a “step-up” approach to
invariance evaluation would foster this endeavor.

For the aforementioned reasons, the recommended sequence of multiple-
groups CFA invariance evaluation is as follows: (1) Test the CFA model
separately in each group; (2) conduct the simultaneous test of equal form
(identical factor structure); (3) test the equality of factor loadings; (4) test
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the equality of indicator intercepts; (5) test the equality of indicator resid-
ual variances (optional); and, if substantively meaningful; (6) test the
equality of factor variances; (7) test the equality of factor covariances (if
applicable, i.e., > 1 latent factor); and (8) test the equality of latent means.
Steps 1–5 are tests of measurement invariance; Steps 6–8 are tests of popu-
lation heterogeneity.

Finally, some debate continues as to whether multiple-groups CFA
should be prefaced by an overall test of covariance matrices across groups.
Introduced by Jöreskog (1971b), the rationale of this procedure is that if
group differences exist in the parameters of the CFA model, then some val-
ues within the covariance matrix should also differ across groups. If the
overall test of the equality of covariances fails to reject the null hypothesis,
no further analyses are conducted and it is concluded that the groups are
invariant. Rejection of the null hypothesis (e.g., Σ1 ≠ Σ2) is interpreted as
justification for conducting multiple-groups CFA to identify the source(s)
of noninvariance (for an illustration of how to employ this test, see
Vandenberg & Lance, 2000). Although some researchers have supported
its continued use (e.g., Vandenberg & Lance, 2000), many methodologists
have questioned the rationale and utility of the omnibus test of equal
covariance matrices (e.g., Byrne, 1998; Byrne et al., 1989; Jaccard & Wan,
1996). For instance, Byrne (1998) notes that this test often produces con-
tradictory findings with respect to equivalencies across groups; that is,
occasions where the omnibus test indicates Σ1 = Σ2 but subsequent
hypothesis tests of the invariance of specific CFA measurement or struc-
tural parameters must be rejected, and vice versa. Jaccard and Wan (1996)
add that if the researcher has a specific hypothesis regarding group differ-
ences on selected parameters, it is better to proceed directly to the
multiple-groups CFA framework because this more focused test will have
greater statistical power than the omnibus comparison of covariance
matrices. Accordingly, these methodologists have concluded that the
omnibus test of equal covariance matrices provides little guidance for test-
ing the equivalence of CFA parameters and thus should not be regarded as
a prerequisite to multiple-groups CFA.

The multiple-groups CFA methodology is now illustrated using an
actual data set of 750 adult outpatients (375 men, 375 women) with cur-
rent mood disorders. In this example, the researcher is interested in
examining the generalizability of the DSM-IV (American Psychiatric As-
sociation, 1994) criteria for the diagnostic category of major depressive
disorder (MDD) between sexes. The analysis was motivated by questions
that had arisen in the field regarding the possibility of salient sex differ-
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ences in the expression of mood disorders (e.g., somatic symptoms such as
appetite/weight change may be more strongly related to depression in
women). Patients were rated by experienced clinicians on the severity of
the nine symptoms that comprise the diagnostic criteria of MDD on 0–8
scales (0 = none, 8 = very severely disturbing/disabling; see Figure 7.3 for
description of the 9 symptoms). Prior to the CFAs, the data were screened
to ensure their suitability for the ML estimator (i.e., normality, absence of
multivariate outliers). In accord with its DSM-IV conceptualization, a
unidimensional model of MDD was posited (see Figure 7.3). For substan-
tive reasons (cf. DSM-IV), a correlated residual was specified between the
first two diagnostic criteria (i.e., depressed mood, loss of interest in usual
activities). The first criterion (M1, depressed mood) was used as a marker
indicator to define the metric of the latent variable. Accordingly, the covar-
iance structure aspect of the model was overidentified in both groups with
df = 26 (45 variances/covariances, 19 freely estimated parameters).

Prior to conducting the multiple-groups CFAs, it is important to
ensure that the posited one-factor model is acceptable in both groups. If
markedly disparate measurement models are obtained between groups,
this outcome would contraindicate further invariance evaluation. As
shown in Table 7.9, in both men and women, overall fit statistics for the
one-factor solution were consistent with good model fit. In both groups,
all freely estimated factor loadings were statistically significant (all
ps < .001) and salient (completely standardized factor loadings ranged
from .34 to .73). No remarkable points of strain were noted in either solu-
tion, as reflected by small modification indices, expected parameter
change values, and standardized residuals.

Next, the simultaneous analysis of equal form was conducted. Table
7.10 provides the LISREL, Mplus, Amos, and EQS syntax for the equal
form analysis. In LISREL, Amos, and EQS, the programming essentially
entails “stacking” the CFA analysis of one group on top of the other. In
LISREL and EQS, the programs are alerted to the multiple groups analysis
by an additional command on the second line of syntax (NG = 2 on the
DATA line of LISREL; GROUPS = 2 on the /SPECIFICATIONS line of
EQS). What follows in the EQS programming is stacking the two CFA
analyses for men and women; that is, the programming is identical to the
syntax that would be written for conducting the CFA in a single group.
The LISREL programming also follows this logic, but some programming
shortcuts are implemented. Note that on the MODEL (MO) line for men,
the keyword value “PS” is used in the specification of the lambda-X (LX),
phi (PH), and theta-delta (TD) matrices. In LISREL, “PS” is used to signify
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FIGURE 7.3. Measurement model of DSM-IV Major Depression. MDD1, de-
pressed mood; MDD2, loss of interest in usual activities; MDD3, weight/appetite
change; MDD4, sleep disturbance; MDD5, psychomotor agitation/retardation;
MDD6, fatigue/loss of energy; MDD7, feelings of worthlessness/guilt; MDD8, con-
centration difficulties; MDD9, thoughts of death/suicidality.

Females: Sample Correlations, Means (M), and Standard Deviations (SD); N = 375

MDD1 MDD2 MDD3 MDD4 MDD5 MDD6 MDD7 MDD8 MDD9

MDD1 1.000
MDD2 0.616 1.000
MDD3 0.315 0.313 1.000
MDD4 0.349 0.332 0.261 1.000
MDD5 0.314 0.250 0.270 0.327 1.000
MDD6 0.418 0.416 0.298 0.328 0.317 1.000
MDD7 0.322 0.313 0.096 0.117 0.130 0.140 1.000
MDD8 0.409 0.415 0.189 0.314 0.303 0.281 0.233 1.000
MDD9 0.318 0.222 0.051 0.115 0.140 0.150 0.217 0.222 1.000

M: 4.184 3.725 1.952 3.589 2.256 3.955 3.869 3.595 1.205
SD: 1.717 2.015 2.096 2.212 2.132 2.005 2.062 2.156 1.791

Males: Sample Correlations, Means (M), and Standard Deviations (SD); N = 375

MDD1 MDD2 MDD3 MDD4 MDD5 MDD6 MDD7 MDD8 MDD9

MDD1 1.000
MDD2 0.689 1.000
MDD3 0.204 0.218 1.000
MDD4 0.335 0.284 0.315 1.000
MDD5 0.274 0.320 0.153 0.265 1.000
MDD6 0.333 0.333 0.221 0.364 0.268 1.000
MDD7 0.258 0.211 0.114 0.139 0.185 0.132 1.000
MDD8 0.319 0.346 0.176 0.207 0.231 0.279 0.146 1.000
MDD9 0.316 0.269 0.111 0.140 0.117 0.131 0.263 0.163 1.000

M: 4.171 3.685 1.739 3.357 2.235 3.661 3.421 3.517 1.259
SD: 1.598 2.018 2.094 2.232 2.108 2.113 2.286 2.174 1.788
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TABLE 7.10. Computer Syntax (LISREL, Mplus, EQS, Amos) for Equal Form Multiple-
Groups Model of Major Depression

LISREL 8.72

TITLE LISREL PROGRAM FOR EQUAL FORM OF MAJOR DEPRESSION (FEMALES)
DA NG=2 NI=9 NO=375 MA=CM                                 ! NOTE: NG = 2
LA
M1 M2 M3 M4 M5 M6 M7 M8 M9
KM
1.000
0.616  1.000
0.315  0.313  1.000
0.349  0.332  0.261  1.000
0.314  0.250  0.270  0.327  1.000
0.418  0.416  0.298  0.328  0.317  1.000
0.322  0.313  0.096  0.117  0.130  0.140  1.000
0.409  0.415  0.189  0.314  0.303  0.281  0.233  1.000
0.318  0.222  0.051  0.115  0.140  0.150  0.217  0.222  1.000
SD
1.717 2.015 2.096 2.212 2.132 2.005 2.062 2.156 1.791
MO NX=9 NK=1 PH=SY,FR LX=FU,FR TD=SY,FR
LK
DEPRESS
PA LX
0
1
1
1
1
1
1
1
1
VA 1.0 LX(1,1)                   ! SET THE METRIC OF THE LATENT VARIABLE
PA TD
1
1 1
0 0 1
0 0 0 1
0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
OU ME=ML RS MI SC AD=OFF IT=100 ND=4
EQUAL FORM OF MAJOR DEPRESSION (MALES)        ! SEPARATE TITLE FOR MALES
DA NI=9 NO=375 MA=CM
LA
M1 M2 M3 M4 M5 M6 M7 M8 M9
KM
1.000
0.689  1.000

(cont.)
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TABLE 7.10. (cont.)

0.204  0.218  1.000
0.335  0.284  0.315  1.000
0.274  0.320  0.153  0.265  1.000
0.333  0.333  0.221  0.364  0.268  1.000
0.258  0.211  0.114  0.139  0.185  0.132  1.000
0.319  0.346  0.176  0.207  0.231  0.279  0.146  1.000
0.316  0.269  0.111  0.140  0.117  0.131  0.263  0.163  1.000
SD
1.598  2.018  2.094  2.232  2.108  2.113  2.286  2.174  1.788
MO NX=9 NK=1 PH=PS LX=PS TD=PS                   ! PROGRAMMING SHORTCUTS
OU ME=ML RS MI SC AD=OFF IT=100 ND=4

Mplus 3.11

TITLE: MPLUS PROGRAM FOR EQUAL FORM OF MAJOR DEPRESSION
DATA: FILE IS “C:\MDDALL.DAT”;      ! DATA READ FROM RAW DATA FILE
VARIABLE: NAMES ARE SUBJ SEX M1-M9;

USEVAR ARE M1-M9;
GROUPING IS SEX (0=FEMALE 1=MALE); ! SPECIFY GROUPING FACTOR

ANALYSIS: ESTIMATOR=ML;
MODEL: DEPRESS BY M1-M9;

M1 WITH M2;
MODEL MALE: DEPRESS BY M2-M9;               ! FREELY ESTIMATE PARAMETERS

M1 WITH M2;                     ! IN MEN AS WELL AS IN WOMEN
OUTPUT: SAMPSTAT MODINDICES(10.00) STAND RESIDUAL;

EQS 5.7b

/TITLE
EQS SYNTAX FOR EQUAL FORM OF MAJOR DEPRESSION (FEMALES)

/SPECIFICATIONS
CASES=375; VAR=9; ME=ML; MA=COR; ANALYSIS=COV; GROUPS=2;

! NOTE: GROUPS=2
/MATRIX
1.000
0.616  1.000
0.315  0.313  1.000
0.349  0.332  0.261  1.000
0.314  0.250  0.270  0.327  1.000
0.418  0.416  0.298  0.328  0.317  1.000
0.322  0.313  0.096  0.117  0.130  0.140  1.000
0.409  0.415  0.189  0.314  0.303  0.281  0.233  1.000
0.318  0.222  0.051  0.115  0.140  0.150  0.217  0.222  1.000
/STANDARD DEVIATIONS
1.717 2.015 2.096 2.212 2.132 2.005 2.062 2.156 1.791
/LABELS
V1=depmood; V2=anhedon; V3=weight; V4=sleep; V5=motor; V6=fatigue;
V7=guilt; V8=concent; V9=suicide;
F1 = DEPRESS;

/EQUATIONS
V1 = F1+E1;
V2 = *F1+E2;

(cont.)
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TABLE 7.10. (cont.)

V3 = *F1+E3;
V4 = *F1+E4;
V5 = *F1+E5;
V6 = *F1+E6;
V7 = *F1+E7;
V8 = *F1+E8;
V9 = *F1+E9;

/VARIANCES
E1 TO E9= *;
F1 = *;

/COVARIANCES
E1,E2 = *;

/END
/TITLE
EQUAL FORM OF MAJOR DEPRESSION (MALES)

/SPECIFICATIONS
CASES=375; VAR=9; ME=ML; MA=COR; ANALYSIS=COV;

/MATRIX
1.000
0.689  1.000
0.204  0.218  1.000
0.335  0.284  0.315  1.000
0.274  0.320  0.153  0.265  1.000
0.333  0.333  0.221  0.364  0.268  1.000
0.258  0.211  0.114  0.139  0.185  0.132  1.000
0.319  0.346  0.176  0.207  0.231  0.279  0.146  1.000
0.316  0.269  0.111  0.140  0.117  0.131  0.263  0.163  1.000
/STANDARD DEVIATIONS
1.598  2.018  2.094  2.232  2.108  2.113  2.286  2.174  1.788
/LABELS
V1=depmood; V2=anhedon; V3=weight; V4=sleep; V5=motor; V6=fatigue;
V7=guilt; V8=concent; V9=suicide;
F1 = DEPRESS;

/EQUATIONS
V1 = F1+E1;
V2 = *F1+E2;
V3 = *F1+E3;
V4 = *F1+E4;
V5 = *F1+E5;
V6 = *F1+E6;
V7 = *F1+E7;
V8 = *F1+E8;
V9 = *F1+E9;

/VARIANCES
E1 TO E9= *;
F1 = *;

/COVARIANCES
E1,E2 = *;

/PRINT
fit=all;

/LMTEST
/END (cont.)
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TABLE 7.10. (cont.)

Amos Basic 5.0

‘ Example of Multi-Grp Equal Form in Amos 5.0

Sub Main ()
Dim sem As New AmosEngine

sem.TextOutput
sem.Standardized
sem.Smc

sem.BeginGroup “DepFEM.txt”
sem.Structure “m1 <— DEPRESS (1)”
sem.Structure “m2 <— DEPRESS”
sem.Structure “m3 <— DEPRESS”
sem.Structure “m4 <— DEPRESS”
sem.Structure “m5 <— DEPRESS”
sem.Structure “m6 <— DEPRESS”
sem.Structure “m7 <— DEPRESS”
sem.Structure “m8 <— DEPRESS”
sem.Structure “m9 <— DEPRESS”
sem.Structure “m1 <— E1 (1)”
sem.Structure “m2 <— E2 (1)”
sem.Structure “m3 <— E3 (1)”
sem.Structure “m4 <— E4 (1)”
sem.Structure “m5 <— E5 (1)”
sem.Structure “m6 <— E6 (1)”
sem.Structure “m7 <— E7 (1)”
sem.Structure “m8 <— E8 (1)”
sem.Structure “m9 <— E9 (1)”
sem.Structure “E1 <—> E2"

sem.BeginGroup “DepMALE.txt”
sem.Structure “m1 <— DEPRESS (1)”
sem.Structure “m2 <— DEPRESS”
sem.Structure “m3 <— DEPRESS”
sem.Structure “m4 <— DEPRESS”
sem.Structure “m5 <— DEPRESS”
sem.Structure “m6 <— DEPRESS”
sem.Structure “m7 <— DEPRESS”
sem.Structure “m8 <— DEPRESS”
sem.Structure “m9 <— DEPRESS”
sem.Structure “m1 <— E1 (1)”
sem.Structure “m2 <— E2 (1)”
sem.Structure “m3 <— E3 (1)”
sem.Structure “m4 <— E4 (1)”
sem.Structure “m5 <— E5 (1)”
sem.Structure “m6 <— E6 (1)”
sem.Structure “m7 <— E7 (1)”
sem.Structure “m8 <— E8 (1)”
sem.Structure “m9 <— E9 (1)”
sem.Structure “E1 <—> E2"

End Sub



the same pattern and starting values of fixed and freed parameters of the
corresponding matrix of the prior group; this is not to be confused with
keyword “PS,” which would appear to the left of the equals sign in the
model specification of latent-Y variable variances and covariances. Thus,
because no invariance constraints are placed in the equal form solution,
the PS keyword value allows the user to inform LISREL that that the
parameter specification for the measurement model for men and women
are identical, without having to repeat the syntax previously written for
women (i.e., pattern matrices, marker indicators).

The Mplus example in Table 7.10 runs the analysis on a raw data file
instead of variance–covariance matrices (although multiple-groups CFA
can also be conducted in Mplus by reading separate input matrices). In
this case, the data file contains the subject identification number (SUBJ)
and dummy code for sex (SEX: 0 = female, 1 = male), in addition to the
nine clinical ratings of MDD (M1–M9). The USEVARIABLE command
(USEVAR) selects out the nine indicators that will be used in the CFA. The
GROUPING command identifies the variable in the data set that denotes
the levels of group that will be used in the multiple-groups CFA. The first
MODEL command is the same as would be used to specify the Figure 7.3
measurement model in a single group; in this instance, the first level of
GROUP (females) identified by the GROUPING command. Recall that an
Mplus default is to fix the first indicator listed to load on a latent factor as
the marker indicator; thus, the M1 indicator has been automatically set to
be the marker indicator. In multiple-groups analysis, Mplus holds some
measurement parameters to equality across groups by default; specifically,
the factor loadings as well as intercepts if indicator means are included in
the model. Because of the overly stringent nature of this restriction, Mplus
does not hold indicator residual variances and covariances to equality by
default. Moreover, all structural parameters (factor variances, covariances,
latent means) are freely estimated in all groups by default. Thus, because
the current model is testing for equal form, the Mplus default for holding
factor loadings to equality must be overridden. This is accomplished by
the MODEL MALE: command, in which all parameters listed after this
keyword are freely estimated in men’s solution (however, note that the
indicator list omits M1 because it was previously fixed to 1.0 to serve as
the marker indicator). Note that while additional programming is neces-
sary to freely estimate that factor loadings in men’s solution (i.e., DEPRESS
BY M2–M9), the line for correlated residuals between M1 and M2 (i.e., M1
with M2) is included only for clarity (it is redundant with the Mplus
default of freely estimating residual variances and covariances in all
groups).
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As shown in Table 7.9, this solution provides an acceptable fit to the
data. This solution will serve as the baseline model for subsequent tests of
measurement invariance and population heterogeneity. The parameter
estimates for each group are presented in Table 7.11. Inspection of Table
7.9 shows that the df and model χ2 of the equal form solution equal the
sum of the dfs and model χ2s of the CFAs run separately for men and
women; for example, χ2 = 98.91 = 45.96 + 53.95. Although multiple-
groups solutions can be evaluated when the size of the groups vary, if the
group sizes differ markedly, interpretation of the analysis may be more
complex. This is because many aspects of the CFA are influenced by (sen-
sitive to) sample size. For instance, recall that model χ2 is calculated as
FML(N – 1). Consider the scenario where the fit function value is the same
in two groups (i.e., FML1 = FML2), but the size of groups differ considerably
(e.g., n1 = 1,000, n2 = 500). Thus, although the discrepancies between the
observed and predicted covariance matrices are the same in both groups,
the model χ2s of the groups will differ greatly, and Group 1 will contribute
considerably more to the equal form χ2 than Group 2. Specifically, in this
contrived example, Group 1 will contribute two times as much to the over-
all χ2 than Group 2. All other aspects of the CFA model that are based on
χ2 (e.g., overall fit statistics such as the CFI; modification indices) or are
influenced by sample size (e.g., standard errors, power to detect parameter
estimates as significantly different from zero, standardized residuals) will
also be differentially impacted by the unbalanced group sizes. Thus,
although it is permissible to conduct multiple-groups CFA with unequal
sample sizes, it is preferable for the sizes of the groups to be as balanced as
possible. In instances where the group ns differ considerably, the re-
searcher must be mindful of this issue when interpreting the results.

The next analysis evaluated whether the factor loadings (unstandard-
ized) of the MDD indicators were equivalent in men and women. The test
of equal factor loadings is a critical test in multiple-groups CFA. In tandem
with other aspects of measurement invariance evaluation (e.g., equal
form), this test determines whether the measures have the same meaning
and structure for different groups of respondents. Moreover, this test
establishes the suitability of other group comparisons that may be of sub-
stantive interest (e.g., group equality of factor variances, factor means, or
regressive paths among latent variables). In the current data set, the equal
factor loadings model had an overall good fit to the data and did not signif-
icantly degrade fit relative to the equal form solution, χ2

diff(8) = 3.93, ns
(critical value of χ2 = 15.51, df = 8, α = .05). The difference in degrees of
freedom (df = 8) corresponds to the eight factor loadings (M2–M9) that
were freely estimated in both groups in the previous analysis. Because M1
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TABLE 7.11. Parameter Estimates (Mplus) from the Equal Form Measurement
Model of Major Depression in Men and Women

MODEL RESULTS

Estimates S.E. Est./S.E. Std StdYX

Group FEMALE

DEPRESS BY
M1 1.000 0.000 0.000 1.250 0.729
M2 1.107 0.086 12.907 1.384 0.688
M3 0.729 0.101 7.221 0.911 0.435
M4 0.912 0.108 8.406 1.140 0.516
M5 0.812 0.104 7.845 1.016 0.477
M6 0.924 0.100 9.240 1.155 0.577
M7 0.611 0.098 6.220 0.764 0.371
M8 0.979 0.107 9.131 1.224 0.569
M9 0.484 0.085 5.707 0.606 0.339

M1 WITH
M2 0.394 0.147 2.688 0.394 0.114

Variances
DEPRESS 1.563 0.224 6.991 1.000 1.000

Residual Variances
M1 1.376 0.155 8.856 1.376 0.468
M2 2.133 0.223 9.579 2.133 0.527
M3 3.551 0.277 12.837 3.551 0.810
M4 3.583 0.290 12.351 3.583 0.734
M5 3.501 0.278 12.609 3.501 0.772
M6 2.676 0.226 11.822 2.676 0.667
M7 3.658 0.279 13.113 3.658 0.862
M8 3.137 0.264 11.904 3.137 0.677
M9 2.831 0.214 13.223 2.831 0.885

Group MALE

DEPRESS BY
M1 1.000 0.000 0.000 1.024 0.642
M2 1.236 0.098 12.580 1.266 0.628
M3 0.786 0.133 5.911 0.805 0.385
M4 1.166 0.152 7.656 1.193 0.535
M5 0.959 0.139 6.915 0.982 0.466
M6 1.132 0.145 7.790 1.159 0.549
M7 0.766 0.143 5.361 0.784 0.344
M8 1.019 0.144 7.075 1.043 0.480
M9 0.632 0.113 5.617 0.647 0.362

M1 WITH
M2 0.920 0.160 5.743 0.920 0.286

(cont.)
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TABLE 7.11. (cont.)

Variances

DEPRESS 1.048 0.183 5.719 1.000 1.000

Residual Variances
M1 1.499 0.152 9.888 1.499 0.588
M2 2.459 0.244 10.084 2.459 0.605
M3 3.727 0.290 12.830 3.727 0.852
M4 3.547 0.304 11.671 3.547 0.713
M5 3.467 0.282 12.304 3.467 0.783
M6 3.111 0.270 11.516 3.111 0.699
M7 4.599 0.353 13.030 4.599 0.882
M8 3.626 0.297 12.192 3.626 0.769
M9 2.770 0.214 12.943 2.770 0.869

R-SQUARE

Group FEMALE

Observed
Variable R-Square

M1 0.532
M2 0.473
M3 0.190
M4 0.266
M5 0.228
M6 0.333
M7 0.138
M8 0.323
M9 0.115

Group MALE

Observed
Variable R-Square
M1 0.412
M2 0.395
M3 0.148
M4 0.287
M5 0.217
M6 0.301
M7 0.118
M8 0.231
M9 0.131

Note. N = 750.



was fixed to 1.0 in both groups to serve as the marker indicator, this mea-
sure is not involved in the equality constraints. Incidentally, note in Table
7.9 that the equal factor loading solution produced a slight improvement
in the parsimony goodness-of-fit indices as compared with the equal form
solution; for example, RMSEA = .043 versus .049 in the equal factor load-
ing and equal form solution, respectively. This is due to the gain in degrees
of freedom (60 vs. 52), coupled with the trivial change in model χ2

(102.84 vs. 98.91) associated with reproducing the observed covariance
matrices with fewer freely estimated parameters (i.e., increased model par-
simony via constraint of previously free parameters to equality).

Because the constraint of equal factor loadings did not significantly
degrade the fit of the solution, it can be concluded that the indicators evi-
dence comparable relationships to the latent construct of Major Depres-
sion in men and women. Figure 7.4 graphically illustrates various forms of
measurement (non)invariance with respect to factor loadings and indica-
tor intercepts. Although the equality of intercepts has yet to be evaluated,
the result of invariant factor loadings is depicted by Figures 7.4A and 7.4B,
which show parallel regression slopes for Groups 1 and 2; in other words,
a unit change in the underlying dimension (ξ, or Major Depression) is
associated with statistically equivalent change in the observed measure
(X2, or the indicator of loss of interest in usual activities) in both groups
(men and women). However, because the intercepts have not been evalu-
ated, it cannot be concluded that men and women would evidence equiva-
lent observed scores on an indicator at a given level of the latent factor (as
is shown in Figure 7.4A where both the loading and intercept of an indica-
tor, X2, is equivalent between groups).

The previous analyses were based on covariance structures. To exam-
ine the between-group equality of indicator intercepts, the means of the
indicators must be input to the analysis along with the indicators’ vari-
ances and covariances. As in the invariance evaluation of longitudinal
measures, the analysis of mean structures poses additional identification
issues. In the case of this two-group analysis, there are 18 indicator means
(9 for men, 9 for women) but potentially 20 freed parameters of the mean
structure solution (18 intercepts, 2 latent means). Moreover, latent vari-
ables must be assigned an origin in addition to a metric. Thus, as with the
longitudinal invariance example, the mean structure component of the
multiple-groups solution is underidentified in the absence of additional
restrictions. In addition to holding the indicator intercepts to equality
across groups in the measurement invariance solution, identification can
be accomplished by fixing the origin (mean) of the latent variable(s) in
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one group to zero. The group whose latent mean(s) have been fixed to
zero becomes the reference group. From a statistical standpoint, selection
of the reference group is arbitrary, although this choice might be guided by
substantive/interpretative considerations (e.g., reference group = partici-
pants who did not receive an intervention/experimental manipulation).
The latent means in the remaining groups are freely estimated, but these
parameter estimates represent deviations from the reference group’s latent
mean. For example, if Group 2’s latent M = 1.4, this is indicates that, on
average, this group scores 1.4 units higher than the reference group on the
latent dimension, based on the metric of the marker indicator. The ratio-
nale of this approach to model specification is that because the measure-
ment intercepts are constrained to equality across groups (to test for inter-
cept invariance), the latent factors have an arbitrary origin (mean). Thus,
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FIGURE 7.4. Graphical depictions of various forms of measurement invariance
and noninvariance. (A) Equal loadings and intercepts; (B) equal loadings, unequal
intercepts; (C) unequal loadings, equal intercepts; (D) unequal loadings and inter-
cepts.



latent means are not estimated in the absolute sense but instead reflect
average differences in the level of the construct across groups.

Table 7.12 presents the LISREL, Mplus, Amos, and EQS syntax for the
invariant intercepts analysis (also holding the factor loadings to equality).
In each program, women are used as the reference group by fixing their
latent factor mean to zero and the latent mean for men is freely estimated.
In the LISREL program, note that the indicator means have been added to
the input matrix (under the ME heading), and tau-X (TX) and kappa (KA)
matrices have been included on the Model line (MO) for the estimation of
indicator intercepts and the latent factor mean, respectively. For females,
the LISREL programming looks the same as a typical CFA analysis, except
for the TX and KA commands. On the Model line, the command TX=FR
informs LISREL that the vector of intercepts are to be freely estimated. The
KA=FI command fixes the latent mean of Depression to zero in this group.
The remaining salient aspects of the LISREL programming are found on
the Model line for males. The factor loadings and indicator intercepts are
constrained to equality between groups by the commands LX=IN and
TX=IN, respectively (IN = constrain parameters to be invariant with those
of the preceding group). Because indicator error variances and factor vari-
ances are not held to equality in this analysis, the TD=PS and PH=PS com-
mands are used to inform LISREL that these parameters may be freely esti-
mated using the same pattern matrix and starting values used in the prior
group. Finally, the KA=FR command allows the latent mean of Depression
to be freely estimated in males. As noted earlier, this estimate will reflect a
deviation (difference) of males’ latent mean relative to the latent mean of
females.

Most of the aforementioned model specifications are handled by
default in Mplus (Table 7.12). The syntax now includes the subcommand
TYPE=MEANSTRUCTURE to inform Mplus that the analysis will entail
both covariance and mean structures. Accordingly, the indicator means
must be included in the input matrix, or they can be calculated in Mplus
by inputting a raw data file as in the Table 7.12 example. The only syntax
provided for men is “M1 with M2” to freely estimate the correlated error of
these indicators (which in fact is redundant with another Mplus default of
freely estimating residual variances and covariances in all groups). By
default, the factor loadings and indicator intercepts are held to equality in
Mplus.

In EQS, a key programming change is that the /EQUATIONS section
now includes the intercept parameters, which are freely estimated in both
groups (e.g., V1 = *V999 + F1 + E1, where *V999 is the freely estimated
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TABLE 7.12. Computer Syntax (LISREL, Mplus, EQS, Amos) for Equal Factor Loadings
and Equal Indicator Intercepts Multiple-Groups Model of Major Depression

LISREL 8.72

TITLE LISREL PROGRAM FOR EQUAL LOADINGS AND INTERCEPTS OF MDD (FEMALES)
DA NG=2 NI=9 NO=375 MA=CM                                 ! NOTE: NG = 2
LA
M1 M2 M3 M4 M5 M6 M7 M8 M9
KM
<Insert correlation matrix for Females from Figure 7.3>
ME
4.184  3.725  1.952  3.589  2.256  3.955  3.869  3.595  1.205
SD
1.717  2.015  2.096  2.212  2.132  2.005  2.062  2.156  1.791
MO NX=9 NK=1 PH=SY,FR LX=FU,FR TD=SY,FR TX=FR KA=FI
LK
DEPRESS
PA LX
0
1
1
1
1
1
1
1
1
VA 1.0 LX(1,1)                   ! SET THE METRIC OF THE LATENT VARIABLE
PA TD
1
1 1
0 0 1
0 0 0 1
0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
OU ME=ML RS MI SC AD=OFF IT=100 ND=4
EQUAL LOADINGS AND INTERCEPTS OF MDD (MALES)  ! SEPARATE TITLE FOR MALES
DA NI=9 NO=375 MA=CM
LA
M1 M2 M3 M4 M5 M6 M7 M8 M9
KM
<Insert correlation matrix for Males from Figure 7.3>
ME
4.171 3.685 1.739 3.357 2.235 3.661 3.421 3.517 1.259
SD
1.598 2.018 2.094 2.232 2.108 2.113 2.286 2.174 1.788
MO NX=9 NK=1 PH=PS LX=IN TD=PS TX=IN KA=FR   ! PROGRAMMING SHORTCUTS
OU ME=ML RS MI SC AD=OFF IT=100 ND=4

(cont.)
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TABLE 7.12. (cont.)

Mplus 3.11

TITLE: MPLUS PROGRAM FOR EQUAL LOADINGS AND INTERCEPTS OF MDD
DATA: FILE IS “C:\MDDALL.DAT”;
VARIABLE: NAMES ARE ADIS SEX M1-M9;

USEVAR ARE M1-M9;
GROUPING IS SEX (0=FEMALE 1=MALE);

ANALYSIS: ESTIMATOR=ML;
TYPE=MEANSTRUCTURE;

MODEL: DEPRESS BY M1-M9;
M1 WITH M2;

MODEL MALE: M1 WITH M2; ! ALL MSMT PARAMETERS HELD EQUAL BY DEFAULT
OUTPUT: SAMPSTAT MODINDICES(10.00) STAND RESIDUAL;

EQS 5.7b

/TITLE
EQS SYNTAX FOR GENDER INVARIANCE OF MAJOR DEPRESSION (FEMALES)

/SPECIFICATIONS
CASES=375; VAR=9; ME=ML; MA=COR; ANALYSIS=MOM; GROUPS=2;

/MATRIX
<Insert correlation matrix for Females from Figure 7.3>
/MEANS
4.184 3.725 1.952 3.589 2.256 3.955 3.869 3.595 1.205
/STANDARD DEVIATIONS
1.717 2.015 2.096 2.212 2.132 2.005 2.062 2.156 1.791
/LABELS
V1=depmood; V2=anhedon; V3=weight; V4=sleep; V5=motor; V6=fatigue;
V7=guilt; V8=concent; V9=suicide;
F1 = DEPRESS;

/EQUATIONS
V1 = *V999 + F1 + E1;
V2 = *V999 + *F1 + E2;
V3 = *V999 + *F1 + E3;
V4 = *V999 + *F1 + E4;
V5 = *V999 + *F1 + E5;
V6 = *V999 + *F1 + E6;
V7 = *V999 + *F1 + E7;
V8 = *V999 + *F1 + E8;
V9 = *V999 + *F1 + E9;
F1 = 0.0V999 + D1;                        ! FEMALES ARE REFERENCE GROUP

/VARIANCES
E1 TO E9= *;
D1 = *;

/COVARIANCES
E1,E2 = *;

/END
/TITLE
EQS SYNTAX FOR GENDER INVARIANCE OF MAJOR DEPRESSION (MALES)

/SPECIFICATIONS
CASES=375; VAR=9; ME=ML; MA=COR; ANALYSIS=MOM;

/MATRIX
<Insert correlation matrix for Males from Figure 7.3> (cont.)
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TABLE 7.12. (cont.)

/MEANS
4.171 3.685 1.739 3.357 2.235 3.661 3.421 3.517 1.259
/STANDARD DEVIATIONS
1.598 2.018 2.094 2.232 2.108 2.113 2.286 2.174 1.788
/LABELS
V1=depmood; V2=anhedon; V3=weight; V4=sleep; V5=motor; V6=fatigue;
V7=guilt; V8=concent; V9=suicide;
F1 = DEPRESS;

/EQUATIONS
V1 = *V999 + F1 + E1;
V2 = *V999 + *F1 + E2;
V3 = *V999 + *F1 + E3;
V4 = *V999 + *F1 + E4;
V5 = *V999 + *F1 + E5;
V6 = *V999 + *F1 + E6;
V7 = *V999 + *F1 + E7;
V8 = *V999 + *F1 + E8;
V9 = *V999 + *F1 + E9;
F1 = *V999 + D1;            ! MALE LATENT MEAN FREELY ESTIMATED

/VARIANCES
E1 TO E9= *;
D1 = *;

/COVARIANCES
E1,E2 = *;

/CONSTRAINTS
(1,V2,F1)=(2,V2,F1);        ! FACTOR LOADING EQUALITY
(1,V3,F1)=(2,V3,F1);
(1,V4,F1)=(2,V4,F1);
(1,V5,F1)=(2,V5,F1);
(1,V6,F1)=(2,V6,F1);
(1,V7,F1)=(2,V7,F1);
(1,V8,F1)=(2,V8,F1);
(1,V9,F1)=(2,V9,F1);
(1,V1,V999)=(2,V1,V999);    ! INDICATOR INTERCEPT EQUALITY
(1,V2,V999)=(2,V2,V999);
(1,V3,V999)=(2,V3,V999);
(1,V4,V999)=(2,V4,V999);
(1,V5,V999)=(2,V5,V999);
(1,V6,V999)=(2,V6,V999);
(1,V7,V999)=(2,V7,V999);
(1,V8,V999)=(2,V8,V999);
(1,V9,V999)=(2,V9,V999);

/PRINT
fit=all;

/LMTEST
/END

(cont.)
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TABLE 7.12. (cont.)

Amos Basic 5.0

‘ Example of Equal Loadings and Intercepts in Amos 5.0

Sub Main ()
Dim sem As New AmosEngine

sem.TextOutput
sem.ModelMeansandIntercepts
sem.Standardized
sem.Smc

sem.BeginGroup “DepFEM.txt”
sem.GroupName “Females”
sem.Structure “m1 = (TX1) + (1) DEPRESS + (1) E1"
sem.Structure “m2 = (TX2) + (lam2) DEPRESS + (1) E2"
sem.Structure “m3 = (TX3) + (lam3) DEPRESS + (1) E3"
sem.Structure “m4 = (TX4) + (lam4) DEPRESS + (1) E4"
sem.Structure “m5 = (TX5) + (lam5) DEPRESS + (1) E5"
sem.Structure “m6 = (TX6) + (lam6) DEPRESS + (1) E6"
sem.Structure “m7 = (TX7) + (lam7) DEPRESS + (1) E7"
sem.Structure “m8 = (TX8) + (lam8) DEPRESS + (1) E8"
sem.Structure “m9 = (TX9) + (lam9) DEPRESS + (1) E9"
sem.Structure “E1 <—> E2"
sem.Mean “DEPRESS”, “0"

sem.BeginGroup “DepMALE.txt”
sem.GroupName “Males”
sem.Structure “m1 = (TX1) + (1) DEPRESS + (1) E1"
sem.Structure “m2 = (TX2) + (lam2) DEPRESS + (1) E2"
sem.Structure “m3 = (TX3) + (lam3) DEPRESS + (1) E3"
sem.Structure “m4 = (TX4) + (lam4) DEPRESS + (1) E4"
sem.Structure “m5 = (TX5) + (lam5) DEPRESS + (1) E5"
sem.Structure “m6 = (TX6) + (lam6) DEPRESS + (1) E6"
sem.Structure “m7 = (TX7) + (lam7) DEPRESS + (1) E7"
sem.Structure “m8 = (TX8) + (lam8) DEPRESS + (1) E8"
sem.Structure “m9 = (TX9) + (lam9) DEPRESS + (1) E9"
sem.Structure “E1 <—> E2"
sem.Mean “DEPRESS”, “Mn_DEP”

End Sub



indicator intercept; see Table 7.12). In females, the mean of the Depression
factor (F1) is fixed to zero by the equation F1 = 0.0V999 + D1. “D1”
reflects a residual variance (or disturbance, D) because, in fact, the analysis
of mean structures requires the regression of the latent factors and
indicators onto a constant (denoted in EQS as V999; Byrne, 1994). In the
/VARIANCES section of the program, this disturbance variance is freely
estimated in both groups (D1 = *), along with the indicator error vari-
ances (E1 TO E9 = *). In males, the only programming change is that the
latent mean of Depression is freely estimated, F1 = *V999 + D1. The factor
loadings and indicator intercepts are constrained to equality in the
/CONSTRAINTS section of the syntax. For example, the command
(1,V1,V999)= (2,V1,V999) informs EQS to hold the intercept of the V1
indicator (depressed mood) in the first group (women) equal to the inter-
cept of the V1 indicator in the second group (men).

In Amos Basic, the mean structure component is brought into the
solution with the “sem.ModelMeansandIntercepts” command. As in earlier
examples (e.g., Table 7.5), parameters are held to equality by giving them
the same names (e.g., TX1 for the intercept of the M1 indicator). The
mean of the latent factor for females is fixed to zero by the statement,
sem.Mean “DEPRESS”, “0.”

The equal measurement intercepts model is found to be good fitting
and does not result in a significant degradation of fit relative to the equal
factor loadings solution, χ2

diff(8) = 12.47, ns (see Table 7.9). The gain of 8
degrees of freedom (to a total of df = 68) is due to the additional 18 new
elements of the input matrices (i.e., the 9 indicator means for men and
women) minus the 10 mean structure parameters (9 intercepts held
to equality, 1 freely estimated latent mean; for identification purposes,
women served as the reference group by fixing their latent mean to zero).
Because the factor loadings and indicator intercepts are invariant in men
and women, comparison of the groups on the latent mean of Major
Depression is interpretable. In men, the unstandardized parameter esti-
mate for the latent mean is –.13 (not shown in the tables), indicating that,
on average, men score .13 units below women on the dimension of Major
Depression, a difference that is not statistically significant (z = 1.38). This
lack of difference is upheld in a subsequent analysis of population hetero-
geneity (the final analysis in Table 7.9) that constrains the latent means to
equality; that is, χ2

diff = 1.92, which is roughly the same as z = 1.382 (cf.
Wald test, Chapter 4).

As mentioned earlier, Figure 7.4 graphically displays different combi-
nations of factor loading and intercept (non)invariance. Figure 7.4A is
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graphically consistent with the results of the applied example presented
thus far. In this graph, both the loading and the intercept of the indicator
are equivalent between groups. Interpreted in isolation of factor loading
invariance, the finding of intercept invariance suggests that both groups
are expected to have the same observed value of the indicator (X2) when
the latent factor (ξ) is zero. However, the result of factor loading
invariance and intercept invariance can be interpreted as suggesting that,
for any given factor value, the observed values of the indicator are expected
to be statistically equivalent between groups (see dotted line in Figure
7.4A). This concept also upholds the statement made earlier in this chap-
ter that group comparisons of the means of latent factors should be con-
ducted only in the context of factor loading and indicator intercept
invariance.

The remaining three graphs in Figure 7.4 show that if either the load-
ing or intercept is noninvariant, the observed values of the indicator will
differ between groups at a given level of the latent factor (see dotted
lines).2 For example, Figure 7.4B illustrates the situation of an equal factor
loading but an unequal intercept. In this graph, although the indicator evi-
dences the same relationship (regression slope) in both groups (i.e., a unit
change in the factor is associated with the same amount of change in the
indicator in both groups), the groups differ in the location parameter (ori-
gin) of the indicator, meaning that all predicted observed scores will differ
at various levels of the latent factor. Group 1’s predicted scores on the indi-
cator will be higher than Group 2’s across all levels of the “true score,” sug-
gesting that the indicator is biased. This is an example of differential item
functioning, a term that is used to describe situations where an item yields
a different mean response for the members of different groups with the
same value of the underlying attribute (McDonald, 1999). An illustration
of differential item functioning is presented in the “MIMIC Models” sec-
tion of this chapter.

The final aspect of measurement invariance to be tested is the equality
of the indicator error variances. As seen in Table 7.9, nested χ2 evaluation
indicates that the residual variances are equivalent in men and women
patients, χ2

diff(9) = 9.71, ns (critical value of χ2 = 16.92, df = 9, α = .05).
The gain of 9 degrees of freedom corresponds to the 9 residual variances
held to equality. Although this example used a real data set, this outcome
is rare in applied research data. In fact, most methodologists regard equal-
ity of error variances and covariances to be an overly restrictive test that is
usually not important to the endeavor of measurement invariance evalua-
tion (e.g., Bentler, 1995; Byrne, 1998). For instance, the illustration in Fig-
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ure 7.4A shows that prediction of a group equivalent observed score (X2)
by the latent variable model (i.e., factor loadings, indicator intercepts)
does not rely on the condition of equal indicator error variances. However,
the test of equal indicator errors is relevant in situations where the
researcher is interested in determining whether the reliability of an assess-
ment measure is invariant across groups. Nonetheless, in their review of
the extant measurement invariance literature, Vandenberg and Lance
(2000) observed that applied researchers often mistake the test of invari-
ant indicator errors as a test of equivalent reliabilities. These authors
remind us (cf. Cole & Maxwell, 1985) that if a test of invariant indicator
error variances is conducted with the intent of testing the equality of
reliabilities across groups, this evaluation should be preceded by a test that
establishes that the variance of the factor on which the indicators load is
invariant. This is because reliability is defined by the proportion of true
score variance to total variance (total variance = true score variance + error
variance), where true score variance is reflected by the factor variance.
This concept is developed further in Chapter 8 where an alterative
approach to scale reliability evaluation is described. Ordinarily, this test
should be considered as an evaluation of indicator error invariance, not as
a test of invariant reliability, an endeavor that has minimal substantive
importance in most research situations.

The remaining analyses pertain to group comparisons on the struc-
tural parameters of the CFA model (i.e., tests of population heterogeneity).
As noted earlier, the viability of these comparisons rests on the evaluation
of measurement invariance. In other words, it is not useful to compare
groups on aspects of the latent factors (factor variances, factor covariances,
latent means) without first ascertaining that the latent factors measure the
same constructs in the same fashion in each group. Specifically, group
comparisons on factor variances are meaningful only if the factor loadings
have been found to be invariant. Comparisons of the factor covariances (in
CFA models with > 1 latent factor) are meaningful if both the factor load-
ings and factor variances are invariant. Finally, evaluation of group equal-
ity of latent factor means rests on the condition of invariant factor loadings
and indicator intercepts. The conceptual logic of these statements should
be apparent upon review of the equations related to these parameters
(e.g., COV = r1,2SD1SD2; SD2 = σ2), presented in this and earlier chapters
(e.g., Chapter 3).

Evaluation of the equality of a factor variance examines whether the
amount of within-group variability (dispersion) of the construct differs
across groups. Although crucial to all aspects of invariance evaluation, the
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test for equal factor variances best exemplifies why comparisons made by
multiple-groups CFA rely on the unstandardized solution. The test of
invariant factor variances would be meaningless if the metric of the factor
was defined by fixing its variance to 1.0. Because the factor variance (φ) is
strongly determined by the amount of variance in the marker indicator
(i.e., φ = marker indicator variance multiplied by the marker indicator’s
squared completely standardized factor loading), the test of group equality
of a factor variance can be regarded as an evaluation of whether the groups
drew from similar ranges of the underlying construct to respond to the
indicators of that construct. The question addressed by the test of factor
variance equality often does not have clear substantive implications in
applied research, although such evaluation is needed to establish the suit-
ability of the potentially more interesting test of the invariance of factor
covariances (i.e., are the latent variables more strongly related to each
other in one group than another?). In the example of the measurement
model of Major Depression, the factor variances were found to be equal in
men and women, χ2

diff(1) = 0.79, ns. Because the example was based on a
one-factor measurement model, the invariance evaluation of factor co-
variances was not relevant.

Table 7.13 presents the LISREL, Mplus, Amos, and EQS syntax for the
fully invariant measurement model of Major Depression. In LISREL, all of
the equality constraints except for the indicator residuals are made by
commands on the Model line for males; that is, equal factor loadings:
LX=IN; equal indicator intercepts: TX=IN; equal factor variances: PH=IN;
equal latent means: KA=IN. The command TD=IN could also be employed
to hold indicator error variances and covariances to equality. In this exam-
ple, the covariance of the errors of M1 and M2 was allowed to vary freely
in males and females to further illustrate the use of the EQ command.
Because the indicator error variances, but not the M1–M2 error covari-
ance, are to be held to equality, the EQ command is used. For instance, the
statement EQ TD(1,1,1) TD(2,1,1) informs LISREL to hold the error vari-
ance of the M1 indicator (δ11) in the first group (females, denoted by the
first number “1” in parentheses after TD) equal to the error variance of the
M1 indicator in the second group (males, denoted by the number “2” in
parentheses after TD).

In Mplus, the equality constraints for indicator error variances and
factor variance are placed on the solution using the numbers in parenthe-
ses that follow the names of the indicators and latent factor. This overrides
the Mplus default of freely estimating these variances in both groups. As
noted earlier, the factor loadings and indicator intercepts are held to equal-
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TABLE 7.13. Computer Syntax (LISREL, Mplus, EQS, Amos) for Fully Invariant Multiple-
Groups Model of Major Depression

LISREL 8.72

TITLE LISREL PROGRAM FOR INVARIANCE OF MAJOR DEPRESSION CRITERIA
(FEMALES)

DA NG=2 NI=9 NO=375 MA=CM
LA
M1 M2 M3 M4 M5 M6 M7 M8 M9
KM
<Insert correlation matrix for Females from Figure 7.3>
ME
4.184 3.725 1.952 3.589 2.256 3.955 3.869 3.595 1.205
SD
1.717 2.015 2.096 2.212 2.132 2.005 2.062 2.156 1.791
MO NX=9 NK=1 PH=SY,FR LX=FU,FR TD=SY,FR TX=FR KA=FI
LK
DEPRESS
PA LX
0
1
1
1
1
1
1
1
1
VA 1.0 LX(1,1)                   ! SET THE METRIC OF THE LATENT VARIABLE
PA TD
1
1 1
0 0 1
0 0 0 1
0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
OU ME=ML RS MI SC AD=OFF IT=100 ND=4
INVARIANCE OF MAJOR DEPRESSION CRITERIA (MALES)
DA NI=9 NO=375 MA=CM
LA
M1 M2 M3 M4 M5 M6 M7 M8 M9
KM
<Insert correlation matrix for Males from Figure 7.3>
ME
4.171  3.685  1.739  3.357  2.235  3.661  3.421  3.517  1.259
SD
1.598  2.018  2.094  2.232  2.108  2.113  2.286  2.174  1.788

(cont.)
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TABLE 7.13. (cont.)

MO NX=9 NK=1 PH=IN LX=IN TD=SY,FR TX=IN KA=IN ! IN = INVARIANT
PA TD
1
1 1
0 0 1
0 0 0 1
0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
EQ TD(1,1,1) TD(2,1,1)                    ! EQUALITY CONTRAINTS FOR
EQ TD(1,2,2) TD(2,2,2)                    ! RESIDUAL VARIANCES
EQ TD(1,3,3) TD(2,3,3)                    !
EQ TD(1,4,4) TD(2,4,4)                    !
EQ TD(1,5,5) TD(2,5,5)                    !
EQ TD(1,6,6) TD(2,6,6)                    !
EQ TD(1,7,7) TD(2,7,7)                    !
EQ TD(1,8,8) TD(2,8,8)                    !
EQ TD(1,9,9) TD(2,9,9)                    !
OU ME=ML RS MI SC AD=OFF IT=100 ND=4

Mplus 3.11

TITLE:    MPLUS PROGRAM FOR GENDER INVARIANCE OF MAJOR DEPRESSION
DATA:     FILE IS “C:\MDDALL.DAT”;
VARIABLE: NAMES ARE SUBJ SEX M1-M9;

USEVAR ARE M1-M9;
GROUPING IS SEX (0=FEMALE 1=MALE);

ANALYSIS: ESTIMATOR=ML;
TYPE=MEANSTRUCTURE;

MODEL:    DEPRESS BY M1-M9;
M1 WITH M2;
M1 (1); M2 (2); M3 (3); M4 (4); M5 (5); M6 (6); ! EQUAL ERRORS
M7 (7); M8 (8); M9 (9);                         ! EQUAL ERRORS
DEPRESS (10);                          ! EQUAL FACTOR VARIANCE

MODEL MALE: M1 WITH M2;               ! FREELY ESTIMATE ERROR COVARIANCE
[DEPRESS@0];                       ! CONSTRAINT ON LATENT MEAN

OUTPUT:   SAMPSTAT MODINDICES(10.00) STAND RESIDUAL;

EQS 5.7b

/TITLE
EQS SYNTAX FOR GENDER INVARIANCE OF MAJOR DEPRESSION (FEMALES)

/SPECIFICATIONS
CASES=375; VAR=9; ME=ML; MA=COR; ANALYSIS=MOM; GROUPS=2;

/MATRIX
<Insert correlation matrix for Females from Figure 7.3>
/MEANS
4.184 3.725 1.952 3.589 2.256 3.955 3.869 3.595 1.205

(cont.)
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TABLE 7.13. (cont.)

/STANDARD DEVIATIONS
1.717 2.015 2.096 2.212 2.132 2.005 2.062 2.156 1.791
/LABELS
V1=depmood; V2=anhedon; V3=weight; V4=sleep; V5=motor; V6=fatigue;
V7=guilt; V8=concent; V9=suicide;
F1 = DEPRESS;

/EQUATIONS
V1 = *V999 + F1 + E1;
V2 = *V999 + *F1 + E2;
V3 = *V999 + *F1 + E3;
V4 = *V999 + *F1 + E4;
V5 = *V999 + *F1 + E5;
V6 = *V999 + *F1 + E6;
V7 = *V999 + *F1 + E7;
V8 = *V999 + *F1 + E8;
V9 = *V999 + *F1 + E9;
F1 = *V999 + D1;               ! FACTOR MEAN FREED

/VARIANCES
E1 TO E9= *;
D1 = *;

/COVARIANCES
E1,E2 = *;

/END
/TITLE
EQS SYNTAX FOR GENDER INVARIANCE OF MAJOR DEPRESSION (MALES)

/SPECIFICATIONS
CASES=375; VAR=9; ME=ML; MA=COR; ANALYSIS=MOM;

/MATRIX
<Insert correlation matrix for Males from Figure 7.3>
/MEANS
4.171 3.685 1.739 3.357 2.235 3.661 3.421 3.517 1.259
/STANDARD DEVIATIONS
1.598 2.018 2.094 2.232 2.108 2.113 2.286 2.174 1.788
/LABELS
V1=depmood; V2=anhedon; V3=weight; V4=sleep; V5=motor; V6=fatigue;
V7=guilt; V8=concent; V9=suicide;
F1 = DEPRESS;

/EQUATIONS
V1 = *V999 + F1 + E1;
V2 = *V999 + *F1 + E2;
V3 = *V999 + *F1 + E3;
V4 = *V999 + *F1 + E4;
V5 = *V999 + *F1 + E5;
V6 = *V999 + *F1 + E6;
V7 = *V999 + *F1 + E7;
V8 = *V999 + *F1 + E8;
V9 = *V999 + *F1 + E9;
F1 = *V999 + D1;

(cont.)
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TABLE 7.13. (cont.)

/VARIANCES
E1 TO E9= *;
D1 = *;

/COVARIANCES
E1,E2 = *;

/CONSTRAINTS
(1,V2,F1)=(2,V2,F1);             ! FACTOR LOADING EQUALITY
(1,V3,F1)=(2,V3,F1);
(1,V4,F1)=(2,V4,F1);
(1,V5,F1)=(2,V5,F1);
(1,V6,F1)=(2,V6,F1);
(1,V7,F1)=(2,V7,F1);
(1,V8,F1)=(2,V8,F1);
(1,V9,F1)=(2,V9,F1);
(1,V1,V999)=(2,V1,V999);         ! INDICATOR INTERCEPT EQUALITY
(1,V2,V999)=(2,V2,V999);
(1,V3,V999)=(2,V3,V999);
(1,V4,V999)=(2,V4,V999);
(1,V5,V999)=(2,V5,V999);
(1,V6,V999)=(2,V6,V999);
(1,V7,V999)=(2,V7,V999);
(1,V8,V999)=(2,V8,V999);
(1,V9,V999)=(2,V9,V999);
(1,E1,E1) = (2,E1,E1);           ! EQUAL INDICATOR ERRORS
(1,E2,E2) = (2,E2,E2);
(1,E3,E3) = (2,E3,E3);
(1,E4,E4) = (2,E4,E4);
(1,E5,E5) = (2,E5,E5);
(1,E6,E6) = (2,E6,E6);
(1,E7,E7) = (2,E7,E7);
(1,E8,E8) = (2,E8,E8);
(1,E9,E9) = (2,E9,E9);
(1,D1,D1) = (2,D1,D1);           ! EQUAL FACTOR VARIANCE
(1,F1,V999) = (2,F1,V999);       ! EQUAL LATENT MEAN

/PRINT
fit=all;

/LMTEST
/END

Amos Basic 5.0

‘ Example of Full Msmt. Invariance in Amos 5.0
Sub Main ()
Dim sem As New AmosEngine
sem.TextOutput
sem.ModelMeansAndIntercepts
sem.Standardized
sem.Smc

(cont.)



ity in Mplus by default, and thus no additional programming is required
unless the user wishes to override these defaults. Finally, the latent mean
of males is held equal to females by the command [DEPRESS@0]; that is,
the deviation between males’ and females’ latent mean is constrained to
not differ significantly from zero. In EQS, all of the equality constraints are
made in the /CONSTRAINTS section of the syntax. In the sections of the
program corresponding to males’ and females’ measurement model, all
parameters other than the marker indicator are freely estimated; that is,
the syntax is identical for men and women. In the /CONSTRAINTS section
that follows, all of these parameters are then held to equality except for the
factor loading of the marker indicator and the error covariance of V1
and V2.

The equality constraint on the factor means examines whether groups
differ in their levels of the underlying construct. As shown in Table 7.9,
this constraint did not significantly degrade the fit of the model, indicating
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TABLE 7.13. (cont.)

sem.BeginGroup “DepFEM.txt”
sem.GroupName “Females”
sem.Structure “m1 = (TX1) + (1) DEPRESS + (1) E1"
sem.Structure “m2 = (TX2) + (lam2) DEPRESS + (1) E2"
sem.Structure “m3 = (TX3) + (lam3) DEPRESS + (1) E3"
sem.Structure “m4 = (TX4) + (lam4) DEPRESS + (1) E4"
sem.Structure “m5 = (TX5) + (lam5) DEPRESS + (1) E5"
sem.Structure “m6 = (TX6) + (lam6) DEPRESS + (1) E6"
sem.Structure “m7 = (TX7) + (lam7) DEPRESS + (1) E7"
sem.Structure “m8 = (TX8) + (lam8) DEPRESS + (1) E8"
sem.Structure “m9 = (TX9) + (lam9) DEPRESS + (1) E9"
sem.Structure “E1 (TD1)”
sem.Structure “E2 (TD2)”
sem.Structure “E3 (TD3)”
sem.Structure “E4 (TD4)”
sem.Structure “E5 (TD5)”
sem.Structure “E6 (TD6)”
sem.Structure “E7 (TD7)”
sem.Structure “E8 (TD8)”
sem.Structure “E9 (TD9)”
sem.Structure “E1 <—> E2"
sem.Structure “DEPRESS (DEP_PHI)”
sem.Mean “DEPRESS”, “0"

sem.BeginGroup “DepMALE.txt”
sem.GroupName “Males”
<same syntax under sem.GroupName “Females” command is repeated here>



that men and women outpatients did not differ in their average levels of
the underlying dimension of Major Depression, χ2

diff(1) = 1.92, ns. It was
noted earlier in this section that this constraint was essentially redundant
with the significance test of the freely estimated latent mean of male outpa-
tients (z = 1.38, ns). This is because only two groups were used in the anal-
ysis. Hence, the omnibus test, which is the equality constraint on all factor
means (in the current case, κ = 2), is approximately the same as the signifi-
cance test of this single parameter; in both, df = 1.

In instances involving more than two groups, a significant omnibus
test (i.e., a significant increase in χ2 when the means of a given latent vari-
able are held to equality across groups) is typically followed by post hoc
evaluation to determine the nature of the overall effect, along the lines of
simple effects testing in ANOVA. If the analysis used three groups, three
possible follow-up analyses, in which the factor means of two groups are
constrained to equality at a time, could be conducted to identify
which groups differed on their latent means (perhaps with a control for
experiment-wise error in the multiple comparisons, such as the modified
Bonferroni procedure; Jaccard & Wan, 1996). Although the similarities to
ANOVA and the independent t-test are apparent, it should be reempha-
sized that the CFA-based approach to group mean comparison has several
advantages over these more traditional methods. A key strength of the
CFA approach is that it establishes whether the group comparisons are
appropriate. Although traditional analyses simply assume this is the case,
the multiple-groups CFA may reveal considerable measurement non-
invariance (e.g., unequal form, a preponderance of noninvariant factor
loadings and indicator intercepts) that contraindicates groups comparison
on the latent factor mean. As will be discussed shortly, in some instances it
may possible to proceed with such comparisons in the context of partial
measurement invariance. Moreover, group comparisons have more preci-
sion and statistical power in CFA because the structural parameters (factor
means, variances, covariances) have been adjusted for measurement error.
Traditional tests such as ANOVA assume perfect reliability.

A decade ago, it was rare to see a CFA analysis of mean structures in
the applied research literature, primarily because the syntax specification
of such models was very complex in early versions of latent variable soft-
ware packages. At this writing, such analyses have become more common
in the literature, although the technique continues to be underutilized
somewhat; for instance, many psychometric studies continue to rely
exclusively on the analysis of the covariance matrix in the evaluation of
psychological testing instruments. As shown in the prior example, the
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analysis of mean structures is straightforward in the latest releases of soft-
ware programs such as LISREL, Mplus, Amos, and EQS. Given its advan-
tages over traditional statistics (e.g., ANOVA) and its capability to evaluate
other important substantive questions (e.g., psychometric issues such as
differential item functioning), investigators are encouraged to incorporate
mean structures in their applied CFA-based research.

Selected Issues in Single- and Multiple-Groups
CFA Invariance Evaluation

In this section, three miscellaneous issues in CFA invariance evaluation
are discussed. Although each of these issues can impact the conduct and
interpretation of CFA invariance evaluation considerably, the extant SEM
literature has provided minimal guidance on how these issues should be
managed in applied research. Nevertheless, it is important that the re-
searcher be aware of these issues, along with some tentative remedial strat-
egies offered to date.

Partial Measurement Invariance

In their review of the applied CFA literature, Byrne et al. (1989) observed a
widespread belief among researchers that when evidence of noninvariant
measurement parameters (e.g., unequal factor loadings) is encountered,
further testing of measurement invariance and population heterogeneity is
not possible. As noted earlier, an omnibus test of invariance is conducted
by placing equality constraints on a family of unstandardized parameters
of the CFA model (e.g., factor loadings) and determining whether these
restrictions produce a significant increase in model χ2. If a significant
increase in χ2 is observed, then the null hypothesis is rejected (e.g., the
factor loadings are not equal across groups). Fit diagnostics (e.g., modifi-
cation indices, expected parameter change values) can assist the researcher
in identifying the parameters that are noninvariant across groups, across
time, and so on. Indeed, a significant omnibus χ2 should not be inter-
preted as indicating that all parameters are noninvariant; for instance, this
result might be obtained when there is a single noninvariant parameter
within a complex measurement model.

Byrne et al. (1989) reminded researchers that, in many instances,
invariance evaluation can proceed in the context of partial measurement
invariance; that is, in CFA models where some but not all of the measure-
ment parameters are equivalent. For ease of illustration, consider a
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unidimensional model entailing five indicators (X1–X5, where X1 is speci-
fied as the marker indicator), which is tested for invariance between two
groups. Given evidence of equal form, the researcher evaluates the
between-group equality of factor loadings. The more restricted solution
produces a significant increase in χ2, suggesting that at least one of the fac-
tor loadings is noninvariant. Fit diagnostics suggest that the factor loading
of X5 is noninvariant (e.g., associated with high modification index; the
modification indices for X2, X3, and X4 are below 4.0). This is verified in a
respecified multiple-groups solution where all factor loadings other than
the loading of X5 (which is freely estimated in both groups) and X1
(which was previously fixed as the marker indicator) are constrained to
equality between groups; that is, this respecified model does not produce a
significant increase in χ2 relative to the equal form solution. From a statis-
tical perspective, the invariance evaluation may proceed to examine the
equality of other measurement (e.g., indicator intercepts) and structural
parameters (e.g., latent means) in context of this partial invariance. The
researcher would freely estimate the factor loading of X5 in both groups in
subsequent analyses. Indeed, Byrne et al. (1989) note that such analyses
may proceed so long as there exists at least one noninvariant parameter
other than the marker indicator; for instance, in the current example,
invariance evaluation could continue if, say, only the factor loading of X2
was invariant in the two groups. The same logic would apply to other mea-
surement parameters. For example, recall that comparison of latent means
is meaningful only if factor loadings and indicator intercepts are invariant.
In the present illustration, a between-group comparison of the latent
means could be conducted, provided that there are at least partial factor
loading and partial intercept invariance; for example, at least one indicator
other than the marker indicator has a invariant factor loading and inter-
cept.

The main advantage of this strategy is that it allows the invariance
evaluation to proceed after some noninvariant parameters are encoun-
tered. This is very helpful in cases where the evaluation of structural
parameters is of greatest substantive interest. For instance, consider the
situation where the researcher wishes to evaluate a complex longitudinal
structural equation modeling involving several latent variables. Of most
interest are the structural parameters of this model; that is, the paths
reflecting regressions within and among latent variables over time. Before
these paths can be evaluated, the researcher must establish longitudinal
measurement invariance (e.g., to rule out the spurious influence of tempo-
ral change in measurement). Without knowledge of the partial measure-
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ment invariance strategy, the researcher might abandon the evaluation of
structural parameters if measurement noninvariance is detected (e.g., the
factor loadings of a few indicators differ over time). However, assuming a
preponderance of invariant measurement parameters, the substantively
more important analyses (e.g., cross-lagged effects among latent variables)
can be conducted in the context of partial measurement invariance.

The primary disadvantages of partial invariance analysis are the fact
that it is exploratory in nature and that it risks capitalizing on chance.
These issues may be of greater concern when the purpose of the analysis is
psychometric (e.g., evaluation of the measurement invariance of a psycho-
logical questionnaire in demographic subgroups). As with other scenarios,
psychometric invariance evaluation is often conducted in the absence of
explicit hypothesis testing. In fact, although it is counter to the traditions
of the scientific method, researchers typically conduct invariance evalua-
tion with the hope of retaining the null hypothesis; that is, H0: all parame-
ters are the same across groups, thereby supporting the notion that the
testing instrument is unbiased, has equivalent measurement properties,
and so forth. Given the number of parameters that are constrained in
invariance evaluations (especially when the measurement model contains
a large number of indicators), it is possible that some parameters will differ
by chance. In addition, the large sample sizes used in CFA have consider-
able power to detect small differences as statistically significant, especially
because invariance testing relies heavily on χ2 (see the “Reliance on χ2”
section of this chapter). There are currently no methods of determining or
adjusting for such issues (Byrne et al., 1989). Moreover, the guidelines and
procedures for relaxing invariance constraints have not been fully devel-
oped or studied by SEM methodologists. Vandenberg and Lance (2000)
recommend that the partial invariance strategy should not be employed
when a large number of indicators are found to be noninvariant. Indeed,
although it is statistically possible to proceed when a single indicator other
than the marker indicator is invariant, this outcome should prompt the
researcher to question the suitability of the measurement model for further
invariance testing. Although partial invariance evaluation is a post hoc
procedure, this limitation can be allayed to some degree if the researcher
can provide a substantively compelling account for the source of non-
invariance (e.g., see the example of a MIMIC model later in this chapter).
Finally, Byrne et al. (1989) underscore the importance of cross-validation
using an independent sample. For example, if the overall sample is large
enough, it can be randomly divided into two subsamples. In this strategy,
the first sample is used to develop a good-fitting solution where some
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parameters are freely estimated (e.g., across groups) when evidence of
noninvariance arises (fostered by substantive arguments, it is hoped, for
why these parameters differ across groups). The final model is then fit in
the second sample to determine its replicability with independent data.
Although cross-validation is a compelling method to address the limita-
tions of partial invariance evaluation (and post hoc model revision in gen-
eral), Byrne et al. (1989) highlighted some practical concerns, such as the
feasibility of obtaining more than one sufficiently large sample and the fact
that cross-validation is likely to be unsuccessful when multiple parameters
are relaxed in the first sample.

Selection of Marker Indicator

Earlier it was suggested that selection of a latent variable’s marker indica-
tor should not be taken lightly (see Chapter 4). The selection of marker
indicators can also greatly influence measurement and structural in-
variance evaluation. Difficulties will arise in multiple-groups CFA when
the researcher inadvertently selects a marker indicator that is noninvariant
across groups. First, the researcher may not detect this noninvariance
because the unstandardized factor loadings of the marker indicator are
fixed to 1.0 in all groups. Second, subsequent tests of partial invariance
may be poor fitting because the unstandardized measurement parameters
of the remaining indicators (e.g., factor loadings, intercepts) are impacted
by the noninvariant marker indicator. The differences found in the remain-
ing indicators may not reflect “true” differences among groups, but rather
may be an artifact of scaling the metric of the latent factor with an indica-
tor that has a different relationship to the factor in two or more groups.
Although somewhat cumbersome, one approach to exploring this possibil-
ity is to re-run the multiple-groups CFA with different marker indicators.
Chueng and Rensvold (1999) have also introduced procedures for ad-
dressing this issue, although more research is needed to determine the util-
ity and viability of these approaches.

Reliance on 2

As the previous data-based examples illustrate, invariance evaluation relies
strongly on the χ2 statistic. For example, the omnibus test of equality of
indicator intercepts across groups is conducted by determining whether
the constrained solution (in which the intercepts are held to equal across
groups) produces a significant increase in χ2 relative to a less constrained
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model (e.g., an equal factor loadings solution). When a significant degra-
dation in model fit is encountered, procedures to identify noninvariant
parameters rely in part on χ2-based statistics (i.e., modification indices).
As discussed in prior chapters, both model χ2 and modification indices are
sensitive to sample size. Researchers have noted that a double standard
exists in the SEM literature (e.g., Chueng & Rensvold, 2000; Vandenberg
& Lance, 2000). That is, given the limitations of χ2, investigators are
encouraged to use a variety of fit indices to evaluate the overall fit of a CFA
solution (e.g., RMSEA, TLI, CFI, SRMR). However, in invariance evalua-
tion, the χ2 statistic is relied on exclusively to detect differences in more
versus less constrained solutions. The reason why χ2 is the only fit statistic
used for this purpose is that its distributional properties are known and
thus critical values can be determined at various degrees of freedom. This
cannot be done for other fit indices; for example, a more constrained solu-
tion may produce an increase in the SRMR, but there is no way of deter-
mining at what magnitude this increase is statistically meaningful.

Researchers have begun to recognize and address this issue. Cheung
and Rensvold (2000) conducted a large Monte Carlo simulation study to
determine whether critical values of other goodness-of-fit statistics (e.g.,
the CFI) could be identified to reflect the presence/absence of measure-
ment invariance in multiple-groups solutions; for example, does a .01- or
.02-point reduction in the CFI reliably indicate the rejection of the null
hypothesis that the measurement parameters are the same across groups?
Although the authors proposed critical values for three fit statistics, the
validity of these proposals awaits further research.

Another problem that the CFA researcher may encounter on occasion
is that the omnibus test of invariance is statistically significant (i.e., the
constraints result in a significant increase in model χ2), but fit diagnostics
reveal no salient strains with regard to any specific parameter; for instance,
modification indices for all constrained parameters close to or below 4.0
(for an example of this outcome in the applied literature, see Campbell-
Sills et al., 2004). Again, such a result may be indicative of χ2’s over-
sensitivity to sample size and the problem of relying exclusively on χ2 in
invariance evaluation. This outcome would suggest that the differences
suggested by the statistically significant increase in model χ2 are trivial and
thus have no substantive importance. To verify this conclusion, Byrne et
al. (1989) propose that a sensitivity analysis can be helpful. Sensitivity
analysis is a post hoc method of determining whether the addition of
minor parameters (e.g., relaxation of the constraints on parameters that
had previously been held to equality) results in a clear change in the major
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parameters of the model (e.g., the factor loadings). For example, if the
major parameters do not change when minor parameters are included in
the model, this could be considered evidence for the robustness of the ini-
tial solution. The less parsimonious model may now be statistically equiv-
alent to the baseline solution, but these additional minor parameters are
not needed because they do not appreciably impact the major parameters
of the solution. However, if the additional parameters significantly alter
the major parameters, this would suggest that exclusion of these post hoc
parameters (e.g., factor loadings or intercepts that were freely estimated in
some or all groups) would lead to biased estimates of the major parame-
ters. However, sensitivity analysis is limited somewhat by its subjective
nature (i.e., what constitutes “salient” change in the model’s major param-
eters when post hoc parameters are included or excluded from the solu-
tion). To increase the objectivity of this approach, Byrne et al. (1989) sug-
gest correlating the major parameters (e.g., factor loadings) in the initial
model with those of the best-fitting post hoc solution. Although coeffi-
cients close to 1.00 might provide clear support for the more constrained
model and argue against the importance of the additional freed parame-
ters, this conclusion becomes more vague when the correlation is well
below 1.00. Moreover, a high correlation may still mask the fact that one
or two major parameters differ considerably in the context of a multiple-
indicator model where all other parameters are roughly the same. The
caveats of partial invariance evaluation should also be considered (i.e.,
exploratory nature, risk of chance effects, importance of cross-validation).

MIMIC Models (CFA with Covariates)

A less commonly used method of examining invariance in multiple groups
entails regressing the latent factors and indicators onto covariates that rep-
resent group membership (e.g., Sex: 0 = female, 1 = male). This approach
has been referred to as CFA with covariates or MIMIC models (MIMIC =
multiple indicators, multiple causes; Jöreskog & Goldberger, 1975;
Muthén, 1989). Unlike multiple-groups CFA, a single input matrix is used
in the analysis. The input matrix contains the variances and covariances of
both the latent variable indicators and the covariates that denote group
membership. Indicator means are not included as input, as might be the
case for multiple-groups CFA. The two basic steps of MIMIC modeling are
(1) establish a viable CFA (or E/CFA; see Chapter 5) measurement model
using the full sample (i.e., collapsing across groups); and (2) add co-
variate(s) to the model to examine their direct effects on the latent factors
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and selected indicators. A significant direct effect of the covariate on the
latent factor represents population heterogeneity; that is, the factor means
are different at different levels of the covariate (akin to the test of equal
latent means in multiple-groups CFA). A significant direct effect of the
covariate on an indicator of a latent factor represents measurement
noninvariance; that is, when the latent factor is held constant, the means
of the indicator are different at different levels of the covariate, thereby
pointing to differential item (indicator) functioning (akin to the test of
equal indicator intercepts in multiple-groups CFA). Although both aspects
of invariance evaluation in MIMIC modeling correspond to the mean
structure component of multiple-groups CFA, indicator intercepts and fac-
tor means are not estimated in the MIMIC analysis and indicator means
are not included in the input matrix. Rather, as in the analysis of covari-
ance structure, these group mean differences are deviations conveyed by
the parameter estimates of the direct effects (e.g., Sex → Latent Factor)
where the means of the indicators and factors are assumed to be zero. For
instance, if the unstandardized direct effect of Sex → Latent Factor is .75,
then the latent means of males and females differ by .75 units, per the met-
ric of the factor’s marker indicator.

Unlike multiple-groups CFA, MIMIC models can test only the in-
variance of indicator intercepts and factor means. Thus, MIMIC models
assume that all other measurement and structural parameters (i.e., factor
loadings, error variances/covariances, factor variances/covariances) are the
same across all levels of the covariates (groups). A primary advantage of
MIMIC models is that they usually have smaller sample size requirements
than multiple-groups CFA. Whereas multiple-groups CFA entails the
simultaneous analysis of two or more measurement models, MIMIC
involves a single measurement model and input matrix. For example, in
the case where a researcher wishes to conduct an invariance analysis with
three groups but has a total sample size of 150, the size of each group may
not be sufficient for each within-group CFA using the multiple-groups
approach; that is, the analysis would require three separate CFAs, each
with an n = 50. However, the N = 150 may be suitable for a single CFA in
which aspects of the measurement model are regressed onto covariates,
although sample size considerations must also be brought to bear with
regard to the statistical power of the direct effects of the covariates (see
Chapter 10).3

Another potential strength of MIMIC over multiple-groups CFA arises
when there are many groups involved in the comparison. Multiple-groups
CFA with three or more groups can be very cumbersome (depending also
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on the complexity of the measurement model) because of the number of
parameters that must be estimated and held equal across all groups. In
addition, post hoc testing is more complex when an omnibus test of the
null hypothesis of a given aspect of invariance is rejected. In contrast,
MIMIC models are more parsimonious because measurement model para-
meters are not estimated in each group.

In most applications of MIMIC, the covariate is a nominal variable
that represents levels of known groups (e.g., Sex: 0 = female, 1 = male).
When the levels of group (k) are three or more, group membership can be
reflected as dummy codes, per the procedures found in multiple regression
textbooks (e.g., Cohen et al., 2003). If k = 3, two (k – 1) binary codes are
created that identify two of the three levels of the nominal variable, and
the remaining level is treated as the reference group that does not receive
its own code. Although categorical covariates are typically used in MIMIC
models, a normal theory estimator such as ML may still be used if the indi-
cators of the latent factors satisfy asymptotic theory assumptions (cf.
Chapter 9). This is because the categorical variables are used as predictors
instead of outcomes (cf. multiple regression vs. logistic regression). How-
ever, the covariates used in MIMIC models can also be dimensional (e.g.,
age). The ability to accommodate continuous predictors can be viewed as
another potential advantage of MIMIC over multiple-groups CFA, because
the latter would necessitate imposing categorical cutoffs on a dimensional
variable to form “groups” for the analysis (cf. MacCallum, Zhang, &
Preacher, 2002).

Ordinarily, the covariate is assumed to be free of measurement error
(i.e., its error variance is fixed to zero). This assumption is reasonable
when the covariate represents known groups (e.g., male vs. female). How-
ever, the desired amount of measurement error can be modeled in a
dimensional covariate using the procedures described in Chapter 4; that is,
the unstandardized error of the covariate can be fixed to some non-zero
value on the basis of the sample variance estimate and known reliability
information (see Eqs. 4.14 and 4.15, Chapter 4).

Unlike other examples of CFA presented in this book thus far, the
MIMIC approach reflects a latent-Y (endogenous) variable specification
(cf. Figure 3.4, Chapter 3). This is because the latent factors (and their
indicators) are specified as outcomes predicted by the covariates (see Fig-
ure 7.5). This distinction has minimal impact on syntax programming in
programs such as Mplus, Amos, and EQS, which accommodate the latent
Y specification “behind the scenes,” but does require several alterations if
the analysis is conducted using the LISREL matrix programming language.
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The MIMIC methodology is illustrated using the model presented in
Figure 7.5. In this example, the researcher wishes to examine selected
aspects of population heterogeneity (latent factor means) and measure-
ment invariance (indicator intercepts) associated with an established ques-
tionnaire measure of social phobia (fear of social situations due to possibil-
ity of negative evaluation by others) and agoraphobia (fear of public
situations due to possibility of experiencing unexpected panic attacks; this
example is loosely based on a psychometric study conducted by Brown et
al., 2005). Indicators of the Social Phobia and Agoraphobia constructs are
provided in Figure 7.5 (items self-rated on 0–8 scales; higher scores =
higher fear). In particular, the researcher expects to find sex differences
with respect to the latent construct of Agoraphobia (population heteroge-
neity) based on the prior clinical literature indicates that women are more
inclined than men to respond to unexpected panic attacks with situational
fear and avoidance. Moreover, the researcher is concerned that an indica-
tor of Agoraphobia (A3) functions differently for men and women. Spe-
cifically, it is anticipated that, regardless of the level of the underlying fac-
tor of Agoraphobia, women will score higher on the A3 indicator than men
(A3: “walking alone in isolated areas”) because of sex differences in the
range of activities relating to personal safety; that is, irrespective of the
presence/absence of the symptoms of agoraphobia, women are less likely
than men to walk alone in isolated areas. To address this question, data
were collected from 730 outpatients (365 men, 365 women) who pre-
sented for assessment and treatment of various anxiety disorders.

The path diagram and input matrix of this MIMIC model are pre-
sented in Figure 7.5. A path from the covariate to the Social Phobia factor
has also been specified to test for sex differences on this construct. The
covariate (Sex) is represented by a single dummy code (0 = female, 1 =
male), and its standard deviation and correlations with the indicators of
Agoraphobia and Social Phobia are included in the input matrix. As seen
in Figure 7.5, the variances of Social Phobia and Agoraphobia are not esti-
mated in the MIMIC model. Instead, because the model attempts to
explain variance in these latent factors by the sex covariate, these parame-
ters are residual variances (E; often referred to as disturbances). Also note
that the residual variances of Social Phobia and Agoraphobia are specified
to be correlated. This specification is justified by the argument that the
constructs of Social Phobia and Agoraphobia are not completely orthogo-
nal, and that this overlap can not be fully accounted for by the sex
covariate; for example, sex is not a “third variable” responsible for the
overlap between the dimensions of Social Phobia and Agoraphobia.
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The first step is to ensure that the two-factor model of Social Phobia
and Agoraphobia is reasonable and good fitting in the full sample
(N = 730). In this step, the sex covariate is not included in the CFA and
the variances (φ11, φ22) and covariance (φ21) of the two factors are freely
estimated (i.e., a typical CFA model is specified). This model provided a
good fit to the data, χ2(8) = 3.06, p = .93, SRMR = .012, RMSEA = 0.00
(90% CI = 0.00 to 0.01, CFit = 1.00), TLI = 1.005, CFI = 1.00. There are no
salient areas of strain in the solution (e.g., no modification indices > 4.0),
and all parameter estimates were reasonable and statistically significant
(e.g., range of completely standardized factor loadings = .67 to .89; corre-
lation between Social Phobia and Agoraphobia = .28).
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FIGURE 7.5. MIMIC model of Social Phobia and Agoraphobia. S1, giving a
speech; S2, meeting strangers; S3, talking to people; A1, going long distances from
home; A2, entering a crowded mall; A3, walking alone in isolated areas (all ques-
tionnaire items rated on 0–8 scales, where 0 = no fear and 8 = extreme fear).

Sample Correlations and Standard Deviations (SDs); N = 730 (365 males, 365 females)

S1 S2 S3 A1 A2 A3 Sex

S1 1.000
S2 0.705 1.000
S3 0.724 0.646 1.000
A1 0.213 0.195 0.190 1.000
A2 0.149 0.142 0.128 0.521 1.000
A3 0.155 0.162 0.135 0.557 0.479 1.000
Sex -0.019 -0.024 -0.029 -0.110 -0.074 -0.291 1.000

SD: 2.260 2.730 2.110 2.320 2.610 2.440 0.500



Next, the sex covariate is added to the model (see Figure 7.5). Table
7.14 provides Mplus, LISREL, Amos, and EQS syntax for this model speci-
fication. As can be seen in Table 7.14, the programming is straightforward
in Mplus. Regressing the latent factors of Social Phobia and Agoraphobia,
as well as the A3 indicator, onto the sex covariate is accomplished with the
“ON” keyword (e.g., “SOCIAL ON SEX”). The correlated residual of Social
Phobia and Agoraphobia is specified by the “SOCIAL WITH AGORAPH”
syntax. In EQS, the MIMIC portion of the model is represented in the last
three lines of the /EQUATIONS command. The line V6 = *F2 + *V7 + E6
represents the fundamental equation that variance of A3 (V6) is to be
accounted for by the Agoraphobia latent factor (F2), the sex covariate
(V7), and residual variance (E6). The variance of the latent factors (F1,
F2) is reproduced by variance explained by the sex covariate and residual
variance (e.g., F1 = *V7 + D1). The /VARIANCE commands indicate that
all residual variances (indicators: E1–E6; latent factors: D1, D2) and X-
variable (V7) variances should be freely estimated. The /COVARIANCE
command, D1,D2 = *, indicates that the correlated disturbance (residual)
between Social Phobia and Agoraphobia should also be freely estimated.
Amos Basic uses similar equation (line)-based programming.

LISREL matrix programming is more complicated (see Table 7.14).
Although other programs (e.g., Mplus) rely on the same programming
logic exemplified by the following LISREL programming, their software
contains convenience features that allow the user to set up the analysis in a
less complex manner. This is also true for the SIMPLIS sublanguage of
LISREL. First, note that latent-Y programming is used (lambda-Y and
theta-epsilon for factor loadings and indicator errors, respectively; psi for
factor variances and covariances) because the CFA portion of the MIMIC
model is endogenous (cf. Chapter 3). Although Sex is really an X variable,
it is treated as a Y variable so that the overall model can be specified in
LISREL. An “all Y” programming strategy is often used to accomplish
other special analyses in the LISREL framework (e.g., see scale reliability
estimation in Chapter 8). Another programming trick is that A3 is
regarded as another factor (see LE line and pattern matrix for LY); thus,
the model is programmed to have four latent factors (Social Phobia, Agora-
phobia, A3, Sex). This programming (in tandem with PA BE matrix pro-
gramming, discussed below) actually produces a solution equivalent to a
typical CFA solution (see the “Equivalent CFA Solutions” section in Chap-
ter 5). That is, although it will not be found in the estimates for lambda-Y,
the solution will generate a factor loading for A3 onto Agoraphobia that is
identical to what would be obtained in an ordinary CFA specification. For
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TABLE 7.14. Computer Syntax (Mplus, LISREL, EQS, Amos) for MIMIC Model
of Social Phobia and Agoraphobia (Regressing the Latent Factors and the A3 Indicator
on the Sex Covariate)

Mplus 3.11

TITLE:    CFA MIMIC MODEL
DATA:     FILE IS MIMIC6.DAT;

TYPE IS STD CORR;
NOBS ARE 730;

VARIABLE: NAMES ARE S1 S2 S3 A1 A2 A3 SEX;
ANALYSIS: ESTIMATOR=ML;
MODEL:    SOCIAL BY S1-S3;

AGORAPH BY A1-A3;
SOCIAL ON SEX; AGORAPH ON SEX; A3 ON SEX; SOCIAL WITH AGORAPH;

OUTPUT:   SAMPSTAT MODINDICES(4.00) STAND RESIDUAL;

LISREL 8.72

TITLE LISREL PROGRAM FOR MIMIC MODEL
DA NI=7 NO=730 MA=CM
LA
S1 S2 S3 A1 A2 A3 SEX                   ! SEX: 0 = FEMALE, 1 = MALE
KM
1.000
0.705 1.000
0.724 0.646 1.000
0.213 0.195 0.190 1.000
0.149 0.142 0.128 0.521 1.000
0.155 0.162 0.135 0.557 0.479 1.000

-0.019 -0.024 -0.029 -0.110 -0.074 -0.291 1.000
SD
2.26 2.73 2.11 2.32 2.61 2.44 0.50
MO NY=7 NE=4 LY=FU,FR TE=SY,FR PS=SY,FR BE=FU,FR
LE
SOCIAL AGORAPH A3 SEX
PA LY
0 0 0 0
1 0 0 0
1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0                                 ! A3 IS A PSEUDOFACTOR
0 0 0 0
VA 1.0 LY(1,1) LY(4,2) LY(6,3) LY(7,4)  ! SET METRIC OF VARIABLES
PA TE
1
0 1
0 0 1
0 0 0 1
0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0 0    ! FIX ERROR OF SEX COVARIATE TO ZERO

(cont.)
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TABLE 7.14. (cont.)

PA PS
1
1 1            ! CORRELATED DISTURBANCE BETWEEN SOCIAL AND AGORAPH
0 0 1          ! ERROR VARIANCE OF A3
0 0 0 1        ! VARIANCE OF SEX
PA BE
0 0 0 1        ! PATH FROM SEX TO SOCIAL LATENT VARIABLE
0 0 0 1        ! PATH FROM SEX TO AGORAPH LATENT VARIABLE
0 1 0 1        ! PATH (FACTOR LOADING) FROM AGORAPH TO A3 INDICATOR
0 0 0 0        ! AND PATH FROM SEX TO A3 INDICATOR
OU ME=ML RS MI SC AD=OFF IT=100 ND=4

EQS 5.7b

/TITLE
EQS SYNTAX FOR MIMIC MODEL

/SPECIFICATIONS
CASES=730; VAR=7; ME=ML; MA=COR;

/MATRIX
1.000
0.705 1.000
0.724 0.646 1.000
0.213 0.195 0.190 1.000
0.149 0.142 0.128 0.521 1.000
0.155 0.162 0.135 0.557 0.479 1.000

-0.019 -0.024 -0.029 -0.110 -0.074 -0.291 1.000
/STANDARD DEVIATIONS
2.26 2.73 2.11 2.32 2.61 2.44 0.50
/LABELS
V1=s1; V2=s2; V3=s3; V4=a1; V5=a2; V6=a3; V7=sex;
F1 = SOCIAL;
F2 = AGORAPH;

/EQUATIONS
V1 = F1 + E1;
V2 = *F1 + E2;
V3 = *F1 + E3;
V4 = F2 + E4;
V5 = *F2 + E5;
V6 = *F2 + *V7 + E6;
F1 = *V7 + D1;
F2 = *V7 + D2;

/VARIANCES
E1 TO E6 = *;
D1,D2 = *;
V7 = *;

/COVARIANCES
D1,D2 = *;

/PRINT
fit=all;

/LMTEST
/END

(cont.)



the pattern matrix programming of lambda-Y (PA LX), the model specifi-
cation for Social Phobia is typical (S1 is used as the marker indicator, the
factor loadings of S2 and S3 are freely estimated). For Agoraphobia, A1 is
used as the marker variable, and the factor loading of A2 is freely esti-
mated. In the remaining part of PA LY (and its associated VA commands),
the metric of the A3 indicator is passed onto the A3 “pseudofactor”; the
metric of the sex covariate (0/1) is passed onto the Sex “factor.” In the
theta-epsilon pattern matrix (PA TE), the error variances of the first five
indicators (S1, S2, S3, A1, A2) are freely estimated. The measurement
errors of the A3 and Sex indicators are fixed to zero. Although the Sex vari-
able will be assumed to have no measurement error in the analysis (i.e., it
corresponds to known groups), the error variance of the A3 indicator will
be estimated in another portion of the solution.

Because an “all Y” specification is employed, variances and co-
variances (not including the error variances of indicators S1 through A2)
must be estimated by the psi (PS) matrix (Ψ). The first two diagonal ele-
ments of PS (i.e., ψ11, ψ22) freely estimate the residual variances of Social
Phobia and Agoraphobia. The first off-diagonal element of PS (ψ 21) esti-
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TABLE 7.14. (cont.)

Amos Basic 5.0

‘ Example of MIMIC Model in Amos 5.0

Sub Main ()
Dim sem As New AmosEngine

sem.TextOutput
sem.Standardized
sem.Smc
sem.Mods 10

sem.BeginGroup “mimic.txt”
sem.Structure “S1 = (1) SOCIAL + (1) E1"
sem.Structure “S2 = SOCIAL + (1) E2"
sem.Structure “S3 = SOCIAL + (1) E3"
sem.Structure “A1 = (1) AGORAPH + (1) E4"
sem.Structure “A2 = AGORAPH + (1) E5"
sem.Structure “A3 = AGORAPH + SEX + (1) E6"
sem.Structure “SOCIAL = SEX + (1) D1"
sem.Structure “AGORAPH = SEX + (1) D2"
sem.Structure “D1 <—> D2"

End Sub



mates the correlated disturbance of these latent factors. The third (ψ33)
diagonal element of PS estimates the residual variance of the A3 pseudo-
factor; this parameter estimate will in fact represent the measurement error
variance of the A3 indicator. The fourth (ψ44) diagonal element of PS freely
estimates the variance of Sex.

The MIMIC portion of the LISREL specification resides in the pattern
matrix programming of beta (BE). The beta ( ) matrix has not been
employed in prior examples in this book because it represents a structural
component of an SEM model; in this context, “structural” refers to direc-
tional relationships among latent variables. Specifically, the beta matrix
focuses on directional relationships among endogenous (Y) variables.
Alternatively, the gamma matrix (Γ) focuses on the directional relation-
ships between exogenous and endogenous variables. Because four latent Y
variables have been specified, will be a 4 × 4 full matrix; the row and col-
umn order of variables is SOCIAL AGORAPH A3 SEX, as specified by ear-
lier programming. Thus, the β14 and β24 parameters in PA BE inform
LISREL to freely estimate the regressive path of Sex to Social Phobia and
Sex to Agoraphobia, respectively (population heterogeneity). The β34 ele-
ment corresponds to the regressive path of Sex to A3 (measurement
invariance). Finally, the β32 element informs LISREL to freely estimate a
path from Agoraphobia to A3. Although this estimate is obtained in a
structural matrix ( ), it should be interpreted as the factor loading of the
A3 indicator on the Agoraphobia latent factor; in fact, this estimate would
equal the LY estimate if the analysis was not conducted as a MIMIC model.

The MIMIC model provides a good fit to the data, χ2 (11) = 3.80, p =
.98, SRMR = .011, RMSEA = 0.00 (90% CI = 0.00 to 0.00, CFit = 1.00), TLI
= 1.008, CFI = 1.00. Inclusion of the sex covariate did not alter the factor
structure or produce salient areas of strain in the solution (e.g., all modifi-
cation indices < 4.0). Table 7.15 provides selected results of this solution.
Of particular interest are the regressive paths linking Sex to the latent fac-
tors and the A3 indicator. As predicted, the path of Sex → Agoraphobia
was statistically significant (z = 2.97, p < .01). Given how the sex covariate
was coded (0 = females, 1 = males) and the negative sign of this parameter
estimate (e.g., unstandardized estimate = –0.475), it can be concluded that
males have a lower mean than females on the Agoraphobia factor; more
specifically, the mean of females is .475 units higher than the mean of
males. The completely standardized estimate of this parameter (StdYX =
–0.13) is not readily interpretable because of the binary predictor (i.e., the
sex covariate). In other words, it is not meaningful to discuss this relation-
ship in terms of a standardized score change in Sex when the level of this

Constraints, Groups, Mean Structures 313



variable is either male or female. But the standardized estimate (Std
= –0.261) can convey useful information about this effect. In a standard-
ized solution, only the latent variable is standardized. Thus, the estimate of
–0.261 can be interpreted as indicating that a unit increase in Sex is associ-
ated with a .261 standardized score decrease in the latent factor of Agora-
phobia; or more directly, women are .261 standardized scores higher than
men on the latent dimension of Agoraphobia. This value can be inter-
preted akin to Cohen’s d (Cohen, 1988, 1992). Following Cohen’s guide-
lines (d = .20, .50, and .80 for small, medium, and large effects, respec-
tively; cf. Cohen, 1992), the sex difference for Agoraphobia is a small
effect. The results in Table 7.15 also reveal that men and women do not
differ with respect to Social Phobia (z = 0.69, ns).

Consistent with the researcher’s predictions, the results of the MIMIC
model show that the A3 indicator is not invariant for males and females
(akin to intercept noninvariance in multiple-groups CFA). This is reflected
by the significant direct effect of Sex on the A3 indicator (z = 6.65,
p < .001) that is not mediated by Agoraphobia. In other words, holding the
latent factor of Agoraphobia constant, there is a significant direct effect of
Sex on the A3 indicator. Thus, at any given value of the latent factor,
women score significantly higher on the A3 indicator than men (by .985
units, or nearly a full point on the 0–8 scale). This is evidence of differen-
tial item functioning; that is, the item behaves differently as an indicator of
Agoraphobia in men and women. For the substantive reasons noted earlier
(sex differences in the range of activities relating to personal safety), the
A3 item is biased against females. Even when their level of the underlying
dimension of Agoraphobia is the same as in men, women will have higher
scores on the A3 indicator (cf. Figure 7.4B) because women’s responses to
this item (“walking alone in isolated areas”) are affected by other influ-
ences that are less relevant to men (i.e., perceptions of personal safety, in
addition to the underlying construct of Agoraphobia).

Although the current example had a specific hypothesis about the
gender noninvariance of the social phobia-agoraphobia questionnaire (re:
item A3), measurement invariance is frequently evaluated in an explor-
atory fashion. In the context of a MIMIC model, this can be done by fixing
all direct effects between the covariate and the indicators to zero and then
inspecting modification indices (and associated expected parameter
change values) to determine whether salient direct effects may be present
in the data. The researcher should not pursue the alternative of freely esti-
mating all of these direct effects, because the model would be under-
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TABLE 7.15. Mplus Results of MIMIC Model of Social Phobia and Agoraphobia

MODEL RESULTS
Estimates S.E. Est./S.E. Std StdYX

SOCIAL BY
S1 1.000 0.000 0.000 2.007 0.889
S2 1.079 0.045 23.967 2.166 0.794
S3 0.855 0.035 24.534 1.716 0.814

AGORAPH BY
A1 1.000 0.000 0.000 1.820 0.785
A2 0.956 0.066 14.388 1.739 0.667
A3 0.917 0.063 14.495 1.669 0.684

SOCIAL ON
SEX -0.109 0.158 -0.690 -0.054 -0.027

AGORAPH ON
SEX -0.475 0.160 -2.973 -0.261 -0.130

A3 ON
SEX -0.985 0.148 -6.653 -0.985 -0.202

SOCIAL WITH
AGORAPH 0.999 0.171 5.857 0.273 0.273

Residual Variances
S1 1.072 0.126 8.533 1.072 0.210
S2 2.750 0.195 14.087 2.750 0.370
S3 1.501 0.114 13.169 1.501 0.338
A1 2.062 0.217 9.498 2.062 0.384
A2 3.777 0.264 14.301 3.777 0.555
A3 2.705 0.214 12.642 2.705 0.455
SOCIAL 4.026 0.284 14.175 0.999 0.999
AGORAPH 3.257 0.317 10.269 0.983 0.983



identified. This could be accomplished by modifying the Mplus syntax in
Table 7.14 with the following MODEL commands (the bolded syntax fixes
the direct effects of the sex covariate on the six indicators to zero):

MODEL: SOCIAL BY S1-S3;
AGORAPH BY A1-A3;
SOCIAL ON SEX; AGORAPH ON SEX; S1-A3 ON SEX@0; SOCIAL

WITH AGORAPH;

This analysis produces the following modification indices in regard to
covariate–indicator direct effects:

M.I. E.P.C. Std E.P.C. StdYX E.P.C.

ON Statements

A1 ON SEX 13.302 0.559 0.559 0.120
A2 ON SEX 10.102 0.549 0.549 0.105
A3 ON SEX 42.748 -1.046 -1.046 -0.214

As in the planned analysis, this result clearly suggests the salience of
the direct effect of the sex covariate on the A3 indicator (e.g., modification
index = 42.78). Because a substantive argument could be made in regard to
the source of this noninvariance, this parameter could be freed in a subse-
quent analysis (i.e., the model depicted in the path diagram in Figure 7.5).
Although the initial analysis suggests that direct effects may exist between
Sex and the A1 and A2 indicators (e.g., modification indices = 13.30 and
10.10, respectively), these relationships are less interpretable and are not
salient (i.e., modification indices drop below 4.0) after the direct effect of
Sex → A3 is added to the model (cf. Jöreskog, 1993, and guidelines for
model revision in Chapter 5).

SUMMARY

This chapter introduced the reader to the methods of evaluating the equiv-
alence of CFA parameters within and across groups. These procedures pro-
vide a sophisticated approach to examining the measurement invariance
and population heterogeneity of CFA models. Invariance evaluation may
be the primary objective of an investigation (e.g., determine the general-
izability of a test instrument) or may establish the suitability of subsequent
analyses (e.g., verify longitudinal measurement invariance to justify group
comparisons on structural parameters such as the equivalence of regres-
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sive paths among latent variables). The chapter also discussed the method-
ology for the analysis of mean structures. Incorporating means into
CFA allows for other important analyses such as the between-group
equivalence of indicator intercepts (cf. differential item functioning) and
between-group comparisons on latent means. While the latter is analogous
to ANOVA, CFA provides a much stronger approach because the group
comparisons are conducted in context of a measurement model (e.g.,
adjusting for measurement error and an error theory).

In Chapter 8, three new specific applications of CFA are discussed:
higher-order factor models, CFA evaluation of scale reliability, and models
with formative indicators. Although the specific applications and issues
covered in the second half of this book are presented in separate chapters
(i.e., Chapter 6 through Chapter 10), it is important to underscore the fact
that these procedures can be integrated into the same analysis. For
instance, the multiple-groups approach presented in this chapter can be
employed to examine the between-group equivalence of a higher-order
CFA, a CFA evaluation of scale reliability, or a model containing indicators
that cause the latent construct (formative indicators). Missing and non-
normal data are common to all types of CFA and must be dealt with appro-
priately (Chapter 9). These topics are covered in the next two chapters.

NOTES

1. In addition, the term “strictly parallel” has been used for indicators that,
in addition to possessing invariant factor loadings and error variances, have equiv-
alent intercepts.

2. In Figure 7.4C, the predicted value of X2 would be the same for Groups 1
and 2 at ξ = 0, because the intercepts are invariant. However, predicted values of
X2 would be expected to differ between groups at all non-zero values of ξ.

3. The level of statistical power is the same for between-groups comparisons
of parameters tested by both the MIMIC and multiple-groups approach (e.g.,
group differences in factor means). The difference lies in the fact that MIMIC
assumes that other measurement and structural parameters (e.g., factor loadings)
are equivalent across groups, and thus the measurement model is not first tested
separately in each group (where sample size may not be sufficient to ensure ade-
quate power and precision of parameter estimates within each group).
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Appendix 7.1

Reproduction of the Observed
Variance–Covariance Matrix with
Tau-Equivalent Indicators of Auditory Memory

Running the model specified by the syntax listed in Table 7.2 produces the fol-
lowing model-estimated variance–covariance matrix (obtained from LISREL
output):

X1 X2 X3 X4 X5 X6
X1 6.8011
X2 4.4302 6.8467
X3 4.4302 4.4302 6.9595
X4 1.4125 1.4125 1.4125 3.7636
X5 1.4445 1.4445 1.4445 3.1681 4.1209
X6 1.4449 1.4449 1.4449 3.1689 3.2407 4.2025

and the following residual (unstandardized) matrix:

X1 X2 X3 X4 X5 X6
X1 0.0110
X2 0.1588 0.2289
X3 -0.1715 -0.0004 -0.2514
X4 -0.0454 0.1356 -0.0659 0.0000
X5 0.1291 -0.0136 -0.2615 0.0022 0.0000
X6 0.1068 0.1201 -0.1281 -0.0032 0.0011 0.0000

A few observations will be made using the X1 indicator as an example (sample
SD = 2.61, factor loading = 2.1048, error variance = 2.3708):

1. Unlike other CFA examples discussed in previous chapters of this
book, the model-estimated variances of the indicators loading on Auditory
Memory (whose factor loadings are held to equality) may not be reproduced
perfectly. For instance, the sample variance of the X1 indicator is 6.8121 (SD2

= 2.612 = 6.8121), but the model-estimated variance of this measure is 6.8011
(resulting in a residual of 0.011). Thus, these model-implied variances, as well
as the model-implied covariances, will count toward any discrepancies be-
tween the observed and predicted matrices (cf. Appendix 3.3 in Chapter 3 on
the calculation of FML). Note that the model perfectly reproduces the variances
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of the Visual Memory indicators because the factor loadings of these measures
have not been constrained to equality in this solution.

2. In the present case where the metric of the latent factor has been
defined by fixing its variance to 1.0, the model estimate of the variances of the
indicators whose factor loadings have been constrained to equality is the sum
of the indicator’s squared unstandardized factor loading and model estimate of
the indicator’s error variance. For instance, the model estimate of the variance
of X1 = λ11

2 + δ11 = 2.10482 + 2.3708 = 6.801 (same as X1 variance estimate in
the predicted matrix presented above). The model estimate of the covariances
of the indicators loading on Auditory Memory is simply the unstandardized
factor loading squared (i.e., 2.10482 = 4.4302). Thus, note that the estimated
covariances of X1–X2, X1–X3, and X2–X3 are the same (4.4302) because the
factor loadings of these indicators have been constrained to be the same (see
also the predicted covariances of these indicators with indicators that are spec-
ified to load on Visual Memory).

3. Inspection of the selected Mplus output presented in the text of Chap-
ter 7 indicates that while the unstandardized loadings for X1, X2, and X3 are
the same (all λs = 2.10, because this portion of the unstandardized solution
has been constrained to equality), the completely standardized estimates of
these loadings differ (λs range from .798 to .807). This is because the error
variances of these indicators are permitted to vary (unlike in the model that
tests for parallel indicators). Recall from Chapter 4 that unstandardized factor
loadings can be readily converted to completely standardized coefficients
using a formula from multiple regression, b* = (bSDx)/(SDy), where b = the
unstandardized coefficient (in this case the unstandardized factor loading),
SDx = the SD of the predictor (in this case, the SD of the latent factor), and SDy

= the SD of the outcome variable (in this case, the predicted SD of the indica-
tor). Using the X1 indicator and model estimates from the model of tau equiv-
alence of Auditory Memory, b = 2.1048, SDx = 1.00 (because the variance of
Auditory Memory was fixed to 1.0), and SDy = 2.6079 (the square root of the
model estimated variance of X1, 6.8011). Thus, the completely standardized
factor loading of X1 is calculated as 2.1048 (1.0) / 2.6079 = .807 (the same as
the completely standardized factor loading for X1 presented in Chapter 7).
The completely standardized loadings for the remaining two indicators of
Auditory Memory differ because the error variances (and hence model-
implied variances) are allowed to differ; for example, completely standardized
loading for X3 = 2.1048 (1.0) / 2.6381 = .798.

4. In models that test for parallel indicators, all completely standardized
estimates for indicators loading on a given factor will be the same (i.e., factor
loadings, errors, communalities). This is because the error variances (and
hence model-implied variances of the indicators) are the same. Thus, all val-
ues of the equation b* = (bSDx)/(SDy) are identical (unlike in the tau-equiva-
lent model, where SDy may differ for each indicator).
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8

Other Types of CFA Models
Higher-Order Factor Analysis,
Scale Reliability Evaluation,
and Formative Indicators

CFA provides a unifying analytic framework for addressing a wide
range of questions commonly asked by social and behavioral scientists.
This notion is further evidenced in the present chapter on other types of
CFA models. Three different applications of CFA are presented: higher-
order factor analysis, scale reliability estimation, and constructs defined
by formative indicators. Higher-order factor analysis is a theory-driven
procedure in which the researcher imposes a more parsimonious struc-
ture to account for the interrelationships among factors established by
CFA. CFA can also be employed to evaluate the reliability of a testing
instrument in a manner that overcomes limitations of traditional methods
(e.g., Cronbach’s alpha). The concluding section describes models in
which it is more reasonable to believe that a set of indicators is the
cause of a construct rather than vice versa. The presentation of these
models will underscore several concepts introduced in earlier chapters
(e.g., model identification, equivalent models).

HIGHER-ORDER FACTOR ANALYSIS

Empirically, it may be of interest to examine the higher-order structure of a
CFA measurement model. Hierarchical factor analysis is often used for the-
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ory testing. For example, this analytic procedure is popular in intelligence
research where it is believed that more specialized facets of ability (e.g.,
verbal comprehension, perceptual organization, memory) are influenced
by a broader dimension of general intelligence (g). Another major reason
why higher-order factor analysis is used in applied research is to rescue a
construct. It is often the case that for a construct initially predicted to be
unidimensional, the research evidence reveals that multiple factors are
required to explain the covariation among the set of indicators of the con-
struct. In these instances, a single higher-order factor can often be speci-
fied to account for the covariation among the multiple factors; that is, the
construct consists of a single broader dimension and several subdi-
mensions (for an applied example in the clinical psychology literature, see
factor analytic research on the construct of anxiety sensitivity; e.g., Taylor,
1999; Zinbarg, Barlow, & Brown, 1997).

All CFA examples presented in this book thus far have been first-order
measurement models. These analyses entailed specification of the number
of factors, the pattern of indicator–factor relationships (i.e., factor load-
ings), and a measurement error theory (random or correlated indicator
error variances). In multiple-factor CFA models, the factors have been
specified to be intercorrelated (oblique); in other words, the factors are
presumed to be interrelated, but the nature of these relationships is
unanalyzed; that is, the researcher makes no substantive claims about the
directions or patterns of factor interrelationships. In higher-order factor
analysis (in both EFA and CFA), the focus is on the intercorrelations
among the factors. In essence, these factor correlations represent the input
matrix for the higher-order factor analysis. A goal of higher-order factor
analysis is to provide a more parsimonious account for the correlations
among lower-order factors. Higher-order factors account for the correla-
tions among lower-order factors, and the number of higher-order factors
and higher-order factor loadings is less than the number of factor correla-
tions. Accordingly, the rules of identification used in first-order CFA apply
to the higher-order component of a hierarchical solution. For instance, the
number of higher-order factors that can be specified is dictated by the
number of lower-order factors (discussed below). Unlike first-order CFA,
higher-order CFA tests a theory-based account for the patterns of relation-
ships among the first-order factors. These specifications assert that higher-
order factors have direct effects on lower-order factors; these direct effects
and the correlations among higher-order factors are responsible for the
covariation of the lower-order factors.
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Second-Order Factor Analysis

An example of a higher-order CFA model is presented in Figure 8.1. In this
example, the researcher is evaluating the latent structure of a question-
naire measure of coping styles (the illustration is loosely based on the
stress and coping literature, e.g., Folkman & Lazarus, 1980; Tobin,
Holroyd, Reynolds, & Wigal, 1989). The questionnaire was administered
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FIGURE 8.1. Higher-order factor model of a questionnaire measure of coping
styles. P1–P3 = problem-solving items; C1–C3 = cognitive restructuring items;
E1–E3 = express emotion items; S1–S3 = social support items.

Sample Correlations and Standard Deviations (SDs); N = 275

P1 P2 P3 C1 C2 C3 E1 E2 E3 S1 S2 S3
P1 1.00
P2 0.78 1.00
P3 0.80 0.77 1.00
C1 0.56 0.51 0.48 1.00
C2 0.52 0.51 0.46 0.78 1.00
C3 0.59 0.51 0.51 0.80 0.79 1.00
E1 0.16 0.15 0.17 0.14 0.18 0.16 1.00
E2 0.19 0.13 0.18 0.14 0.16 0.16 0.81 1.00
E3 0.12 0.17 0.17 0.17 0.20 0.16 0.75 0.80 1.00
S1 0.16 0.13 0.17 0.15 0.16 0.18 0.56 0.52 0.50 1.00
S2 0.16 0.14 0.18 0.15 0.16 0.18 0.51 0.58 0.51 0.81 1.00
S3 0.16 0.15 0.14 0.16 0.16 0.14 0.52 0.57 0.52 0.80 0.79 1.00

SD: 1.40 2.10 1.30 2.30 2.40 1.90 2.00 2.90 2.30 3.10 2.20 1.20



to 275 college undergraduates. The latent structure of this questionnaire is
predicted to be characterized by four first-order factors that represent four
distinctive ways of coping with stressful events: Problem Solving, Cogni-
tive Restructuring, Express Emotions, and Social Support. The four factors
are presumed to be intercorrelated. If no relationships were observed
among the first-order order factors, there would be no justification to pur-
sue higher-order factor analysis. Two higher-order factors are predicted to
account for the six correlations among the first-order factors: Problem-
Focused Coping and Emotion-Focused Coping. The conceptual basis for
this specification is that problem solving and cognitive restructuring are
believed to represent styles of coping aimed directly at resolving the
stressor (problem-focused). Conversely, expressing emotions and seeking
social support are coping strategies not directed toward the stressor,
but instead are aimed at managing emotional reactions to the stressor
(emotion-focused). The empirical feasibility of the higher-order model
should be evidenced by the patterning of correlations among factors in the
first-order model; for example, the latent factors of Problem Solving and
Cognitive Restructuring should be more strongly correlated with Express
Emotions and Social Support, and vice versa.

On a terminological note, Problem-Focused Coping and Emotion-
Focused Coping could be more specifically referred to as second-order fac-
tors (i.e., a second level of factors that account for the correlations among
first-order factors), as opposed to the more general term, higher-order fac-
tors. In context of substantive theory and statistical identification (i.e., a
sufficient number of correlated, second-order factors), higher-order factor
analysis can proceed to the third order and beyond, although such analy-
ses are rare in the applied literature. It is also important to note that
higher-order factors are not defined by observed measures; this aspect
requires some alterations to typical CFA syntax programming.

The general sequence of CFA-based higher-order factor analysis is as
follows: (1) develop a well-behaved (e.g., good-fitting, conceptually valid)
first-order CFA solution; (2) examine the magnitude and pattern of corre-
lations among factors in the first-order solution; and (3) fit the second-
order factor model, as justified on conceptual and empirical grounds.
Thus, using the data set presented in Figure 8.1, the first step is to fit a
four-factor CFA model, allowing the correlations among the factors to be
freely estimated. The four-factor solution provides a good fit to the data,
χ2(48) = 82.668, p < .01, SRMR = .017, RMSEA = 0.049 (90% CI = 0.03 to
0.07, CFit = .51), TLI = 0.99, CFI =.99 (based on LISREL output). The
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completely standardized parameter estimates of this solution are presented
in Table 8.1. As seen in this table, all 12 items are reasonable indicators of
their respective latent factors (range of factor loadings = .86 to .93).

The results from the phi matrix in Table 8.1 provide the correlations
among the factors. Consistent with prediction, all factors are significantly
interrelated (range of zs = 2.92–9.54, not shown in Table 8.1). It is of
importance that the pattern of correlations speaks to the viability of the
posited second-order model. The model depicted in Figure 8.1 asserts that
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TABLE 8.1. Selected LISREL Results of the Four-Factor (First-Order) Measurement
Model of Coping

Completely Standardized Solution

LAMBDA-X
PROBSLV COGRES EXPREMOT SOCSPT

———— ———— ———— ————
P1 0.9108 - - - - - -
P2 0.8643 - - - - - -
P3 0.8787 - - - - - -
C1 - - 0.8876 - - - -
C2 - - 0.8739 - - - -
C3 - - 0.9045 - - - -
E1 - - - - 0.8733 - -
E2 - - - - 0.9285 - -
E3 - - - - 0.8600 - -
S1 - - - - - - 0.9008
S2 - - - - - - 0.8965
S3 - - - - - - 0.8863

PHI

PROBSLV COGRES EXPREMOT SOCSPT
———— ———— ———— ————

PROBSLV 1.0000
COGRES 0.6624 1.0000

EXPREMOT 0.2041 0.2005 1.0000
SOCSPT 0.1959 0.2018 0.6699 1.0000

THETA-DELTA

P1 P2 P3 C1 C2 C3
———— ———— ———— ———— ———— ————

0.1705 0.2529 0.2279 0.2122 0.2362 0.1819

THETA-DELTA

E1 E2 E3 S1 S2 S3
———— ———— ———— ———— ———— ————

0.2374 0.1379 0.2604 0.1885 0.1963 0.2145



Problem Solving and Cognitive Restructuring, and Express Emotions and
Social Support, are more specific dimensions of Problem-Focused Coping
and Emotion-Focused Coping, respectively. If this is true in the data, the
magnitude of factor correlations should show a clear pattern; that is, Prob-
lem Solving and Cognitive Restructuring will be more strongly correlated
with each other than with Express Emotions and Social Support, and
Express Emotions and Social Support will be more highly interrelated than
either factor is with Problem Solving and Cognitive Restructuring. As
shown in Table 8.1, the factor correlations follow this pattern. For exam-
ple, the magnitude of the correlation between Problem Solving and Cogni-
tive Restructuring is considerably higher (φ21 = .66) than the correlations
between Problem Solving and Cognitive Restructuring and Express Emo-
tions and Social Support (e.g., φ31 = .20).

Other patterns of factor correlations would contradict the posited
higher-order model. For instance, if all factor correlations were roughly
the same (e.g., φs ≈ .60), this would favor a single second-order factor.
Although a single second-order factor would adequately account for these
factor correlations, it should not be specified in the absence of conceptual
justification. As with CFA in general, analysis of a higher-order solution
should be fully confirmatory. This is particularly important, considering
the fact that higher-order factors are specified without indicators. In addi-
tion to specifying the structure of higher-order factors, the researcher must
name these factors in a manner that can be defended by theory.

Moreover, the higher-order portion of the solution must be statisti-
cally identified. The rules of identification used for a typical CFA model
readily generalize to higher-order solutions (see Chapter 3, Figures 3.6 and
3.7). Like lower-order factors, higher-order factors must have a metric.
Because interest is primarily in the completely standardized solution, the
metric of higher-order factors is usually defined by standardizing the entire
higher-order portion of the solution. Although less often used, it is possi-
ble to generate an unstandardized higher-order solution by specifying
lower-order factors as “marker indicators” for the higher-order factors
(both approaches are illustrated below). This approach would be favored
in some situations, such as when the researcher is interested in evaluating
the measurement invariance of the higher-order solution in multiple
groups (e.g., Chen, Sousa, & West, 2005). Both strategies produce an
identical completely standardized solution and fit to the data. In addition,
the number of freely estimated parameters in the higher-order portion of
the model must not exceed the total number of factor variances and
covariances in the first-order solution. For this aspect of identification, it
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can be helpful to view the lower-order factors as “indicators” of the higher-
order factors. For example, a single higher-order factor cannot be specified
to account for the factor correlation from a first-order CFA model with two
factors because it would be underidentified (cf. Figure 3.6A, Chapter 3),
unless other (potentially unreasonable) constraints were placed on the
solution (e.g., constraining the higher-order factor loadings to equality
would just-identify the solution). If the first-order model has three factors,
a solution that specifies a single higher-order factor would be just-
identified (cf. Figure 3.6B, Chapter 3); that is, the higher-order solution
would produce the same goodness of fit as the first-order model in which
the three factors are allowed to freely covary. Despite its just-identified
nature, it may nonetheless be substantively meaningful to evaluate such a
solution in order to examine the magnitude (and statistical significance) of
the higher-order factor loadings and relationships of the higher-order
factors to the observed measures (discussed in more detail below;
e.g., Schmid–Leiman transformation).

The higher-order portion of the model presented in Figure 8.1 is
overidentified by a single degree of freedom. Specifically, in the first-order
model there are four factor variances and six factor covariances. In con-
trast, the higher-order portion of the solution contains nine freely esti-
mated parameters: four higher-order factor loadings, four residual vari-
ances (also called disturbances, depicted as “E”s in Figure 8.1), and
the correlation between Problem-Focused Coping and Emotion-Focused
Coping. The variances of Problem-Focused Coping and Emotion-Focused
Coping are not included in this tally because they will be fixed to 1.0 to
define the metric of these higher-order factors. Accordingly, the higher-
order solution has one degree of freedom (10 – 9; cf. Figure 3.7B, Chap-
ter 3).

However, the researcher must be mindful of the possibility of empiri-
cal underidentification in the higher-order portion of a solution. For
instance, empirical underidentification would occur in the Figure 8.1
model if the correlations of the Problem Solving and Cognitive Restruc-
turing factors with the Express Emotions and Social Support factors were
(close to) zero (cf. Figure 3.7D, Chapter 3). In this case, the correla-
tion between the higher-order factors of Problem-Focused Coping and
Emotion-Focused Coping would be zero, and there would be infinite pairs
of higher-order factor loadings that would reproduce the correlations
between Problem Solving and Cognitive Restructuring, and between Ex-
press Emotions and Social Support, if these parameters were freely esti-
mated (see Chapter 3, “CFA Model Identification” section).
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Table 8.2 presents computer syntax from various software packages to
program the high-order model in Figure 8.1. As in MIMIC models (Chap-
ter 7), the factors that were developed in the initial CFA (Problem Solving,
Cognitive Restructuring, etc.) are now latent-Y variables (endogenous)
because they are being predicted by the higher-order factors. This is
reflected in several aspects of the LISREL programming; that is, the 12
items from the coping questionnaire are treated as Y indicators (NY = 12),
four eta (endogenous) variables are specified (NE = 4), and the lambda-Y
(LY) and theta-epsilon (TE) matrices are used to program the first-order
measurement model. Because these factors are now endogenous variables,
their residual variances (disturbances) are estimated using the psi (PS)
matrix (as opposed to estimation of factor variances, using the phi matrix,
PH). On the model line, the command PS=DI accomplishes this by inform-
ing LISREL that psi is a diagonal (DI) matrix; that is, freely estimate resid-
ual variances and fix all off-diagonal relationships—residual covariances—
to zero.

In LISREL matrix programming, the two second-order factors are ksi
(exogenous) variables (NK = 2) that have no observed measures. However,
these factors must be provided a metric. As noted earlier, because the tra-
dition of factor analysis is to focus on the completely standardized solution
(higher-order factor analysis was first developed in EFA), the most com-
mon approach to setting the metric of higher-order factors is to fix their
variances to 1.0. In the LISREL syntax presented in Table 8.2, this is done
using the PH=ST command on the model line (i.e., standardize the phi
matrix).1 The gamma (GA) matrix is needed to specify the directional rela-
tionships between the second-order and first-order factors.

Table 8.2 also provides LISREL syntax for occasions when the user
wishes to generate an unstandardized solution for the higher-order com-
ponent of the model. In this case, the phi matrix should not be standard-
ized (i.e., PH=SY,FR replaces PH=ST). Rather, the scale of the higher-order
factors is set by passing the metric of a lower-order factor up to them. In
this example, Problem Solving and Express Emotion are selected to
serve as “marker indicators” for Problem-Focused Coping and Emotion-
Focused Coping, respectively. The same logic for specifying marker indica-
tors in first-order CFA is used for higher-order factors. However, instead of
the lambda-X or lambda-Y matrices, the gamma matrix is used for this
purpose. Table 8.2 shows that in the pattern matrix for gamma, the paths
of Problem Focus → Problem Solving and Emotion Focus → Express
Emotions are fixed to zero; this is then overridden by the value (VA) state-
ment, which fixes these unstandardized paths to 1.0.
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TABLE 8.2. Computer Syntax (LISREL, Mplus, EQS, Amos, CALIS) for Specification
of a Higher-Order CFA Factor Model of Coping

LISREL 8.72 (Higher-Order Factors Standardized)

TITLE LISREL PROGRAM FOR HIGHER-ORDER FACTOR MODEL OF COPING
DA NI=12 NO=275 MA=CM
LA
P1 P2 P3 C1 C2 C3 E1 E2 E3 S1 S2 S3
KM
<Insert correlation matrix from Figure 8.1 here>
SD
1.40 2.10 1.30 2.30 2.40 1.90 2.00 2.90 2.30 3.10 2.20 1.20
MO NY=12 NK=2 NE=4 LY=FU,FR TE=DI GA=FU,FR PS=DI PH=ST
LK
PROBFOC EMOTFOC
LE
PROBSLV COGRES EXPREMOT SOCSPT
PA LY
0 0 0 0
1 0 0 0
1 0 0 0
0 0 0 0
0 1 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 1 0
0 0 0 0
0 0 0 1
0 0 0 1
VA 1.0 LY(1,1) LY(4,2) LY(7,3) LY(10,4)
PA GA
1 0
1 0
0 1
0 1
OU ME=ML RS MI SC AD=OFF IT=100 ND=4

LISREL 8.72 (Higher-Order Factors Unstandardized)

Model line

MO NY=12 NK=2 NE=4 LY=FU,FR TE=DI GA=FU,FR PS=DI PH=SY,FR

Gamma matrix:

PA GA
0 0
1 0
0 0
0 1
VA 1.0 GA(1,1) GA(3,2)

(cont.)
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TABLE 8.2. (cont.)

Mplus 3.11 (Higher-Order Factors Unstandardized)

TITLE:    HIGHER ORDER CFA MODEL OF COPING
DATA:     FILE IS “C:\HIGHORD.DAT”;

TYPE IS STD CORR;
NOBS ARE 275;

VARIABLE: NAMES ARE P1-P3 C1-C3 E1-E3 S1-S3;
ANALYSIS: ESTIMATOR=ML;
MODEL:    PROBSLV BY P1-P3;

COGRES BY C1-C3;
EXPREMOT BY E1-E3;
SOCSPT BY S1-S3;
PROBFOC BY PROBSLV COGRES;
EMOTFOC BY EXPREMOT SOCSPT;

OUTPUT:   SAMPSTAT MODINDICES(10.00) STAND RESIDUAL;

EQS 5.7b (Higher-Order Factors Standardized)

/TITLE
HIGHER-ORDER MODEL OF COPING: Chapter 8

/SPECIFICATIONS
CASES=275; VARIABLES=12; METHODS=ML; MATRIX=COR; ANALYSIS=COV;

/LABELS
v1=item1; v2= item2; v3= item3; v4= item4; v5= item5; v6= item6;
v7= item7; v8= item8; v9= item9; v10= item10; v11= item11; v12= item12;
f1 = PROBSLV; f2 = COGRES; f3 = EXPREMOT; f4 = SOCSPT; f5 = PROBFOC;
f6 = EMOTFOC;

/EQUATIONS
V1 = F1+E1;
V2 = *F1+E2;
V3 = *F1+E3;
V4 = F2+E4;
V5 = *F2+E5;
V6 = *F2+E6;
V7 = F3+E7;
V8 = *F3+E8;
V9 = *F3+E9;
V10 = F4+E10;
V11 = *F4+E11;
V12 = *F4+E12;
F1 = *F5+D1;
F2 = *F5+D2;
F3 = *F6+D3;
F4 = *F6+D4;

/VARIANCES
F5 = 1;
F6 = 1;
D1 TO D4 = *;
E1 TO E12 = *;

/COVARIANCES
F5, F6 = *;

/MATRIX
<Insert correlation matrix from Figure 8.1 here> (cont.)
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TABLE 8.2. (cont.)

/STANDARD DEVIATIONS
1.40 2.10 1.30 2.30 2.40 1.90 2.00 2.90 2.30 3.10 2.20 1.20
/PRINT
fit=all;

/LMTEST
/WTEST
/END

SAS 8.2 PROC CALIS (Higher-Order Factors Standardized)

Title “Higher-Order CFA Model of Coping”;
Data COPE (type=CORR);
input _TYPE_ $ _NAME_ $ V1-V12;
label V1 = ‘item1’
V2 = ‘item2’
V3 = ‘item3’
V4 = ‘item4’
V5 = ‘item5’
V6 = ‘item6’
V7 = ‘item7’
V8 = ‘item8’
V9 = ‘item9’
V10 = ‘item10’
V11 = ‘item11’
V12 = ‘item12’;

cards;
mean . 0 0 0 0 0 0 0 0 0 0 0 0
std .   1.40 2.10 1.30 2.30 2.40 1.90 2.00 2.90 2.30 3.10 2.20 1.20
N   .    275  275  275  275  275  275  275  275  275  275  275  275

corr V1  1.00  .    .    .    .    .    .    .    .    .    .    .
corr V2  0.78 1.00  .    .    .    .    .    .    .    .    .    .
corr V3  0.80 0.77 1.00  .    .    .    .    .    .    .    .    .
corr V4  0.56 0.51 0.48 1.00  .    .    .    .    .    .    .    .
corr V5  0.52 0.51 0.46 0.78 1.00  .    .    .    .    .    .    .
corr V6  0.59 0.51 0.51 0.80 0.79 1.00  .    .    .    .    .    .
corr V7  0.16 0.15 0.17 0.14 0.18 0.16 1.00  .    .    .    .    .
corr V8  0.19 0.13 0.18 0.14 0.16 0.16 0.81 1.00  .    .    .    .
corr V9  0.12 0.17 0.17 0.17 0.20 0.16 0.75 0.80 1.00  .    .    .
corr V10 0.16 0.13 0.17 0.15 0.16 0.18 0.56 0.52 0.50 1.00  .    .
corr V11 0.16 0.14 0.18 0.15 0.16 0.18 0.51 0.58 0.51 0.81 1.00  .
corr V12 0.16 0.15 0.14 0.16 0.16 0.14 0.52 0.57 0.52 0.80 0.79 1.00
;
run;
proc calis data=COPE cov method=ml pall pcoves;
var = V1-V12;
lineqs
V1 = 1.0 f1 + e1,
V2 = lam2 f1 + e2,
V3 = lam3 f1 + e3,
V4 = 1.0 f2 + e4,
V5 = lam5 f2 + e5,
V6 = lam6 f2 + e6,

(cont.)
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TABLE 8.2. (cont.)

V7 = 1.0 f3 + e7,
V8 = lam8 f3 + e8,
V9 = lam9 f3 + e9,
V10 = 1.0 f4 + e10,
V11 = lam11 f4 + e11,
V12 = lam12 f4 + e12,
f1 = ga1 f5 + D1,
f2 = ga2 f5 + D2,
f3 = ga3 f6 + D3,
f4 = ga4 f6 + D4;

std
f5 = 1.0,
f6 = 1.0,
d1-d4 = ps1-ps4,
e1-e12 = te1-te12;

cov
f5-f6 = ph1;

run;

Amos Basic 5.0 (Higher-Order Factors Standardized)

‘ Example of Second-Order CFA in Amos 5.0
‘
Sub Main ()
Dim sem As New AmosEngine

sem.TextOutput
sem.Standardized
sem.Smc
sem.Mods 10

sem.BeginGroup “coping.txt”

sem.Structure “p1 = (1) PROBSLV + (1) th1"
sem.Structure “p2 =     PROBSLV + (1) th2"
sem.Structure “p3 =     PROBSLV + (1) th3"
sem.Structure “c1 = (1) COGRES + (1) th4"
sem.Structure “c2 =     COGRES + (1) th5"
sem.Structure “c3 =     COGRES + (1) th6"
sem.Structure “e1 = (1) EXPREMOT + (1) th7"
sem.Structure “e2 =     EXPREMOT + (1) th8"
sem.Structure “e3 =     EXPREMOT + (1) th9"
sem.Structure “s1 = (1) SOCSPT + (1) th10"
sem.Structure “s2 =     SOCSPT + (1) th11"
sem.Structure “s3 =     SOCSPT + (1) th12"

sem.Structure “PROBSLV = PROBFOC + (1) D1"
sem.Structure “COGRES = PROBFOC + (1) D2"
sem.Structure “EXPREMOT = EMOTFOC + (1) D3"
sem.Structure “SOCSPT = EMOTFOC + (1) D4"

sem.Structure “PROBFOC (1)”
sem.Structure “EMOTFOC (1)”
sem.Structure “PROBFOC <—> EMOTFOC”

End Sub



If the reader has read the preceding chapters of this book, the pro-
gramming logic for the Mplus, EQS, Amos, and CALIS syntax should be
self-explanatory. As with LISREL, note that the EQS, Amos, and CALIS
programming differentiates disturbance variance (D1–D4 in all examples)
and measurement error variance. In the EQS, Amos, and CALIS examples,
the higher-order solution is standardized (e.g., F5 = 1.0, F6 = 1.0). The
Mplus example will also produce an unstandardized solution, although
this syntax could be readily modified to generate a completely standard-
ized solution only (i.e., fix the variances of the higher-order factors to 1.0).
As noted earlier, regardless of whether an unstandardized solution is gen-
erated, the specifications will produce identical results in terms of overall
fit, modification indices, completely standardized parameter estimates,
and so forth.

The fit of the higher-order solution is as follows: χ2(49) = 82.703,
p < .01, SRMR = .017, RMSEA = 0.047 (90% CI = 0.03 to 0.07, CFit = .55),
TLI = 0.99, CFI =.99 (LISREL output). A higher-order solution cannot
improve goodness of fit relative to the first-order solution where the fac-
tors are freely intercorrelated. If the higher-order aspect of the model is
overidentified, it is attempting to reproduce these factor correlations with
fewer number of freely estimated parameters. When the higher-order
model is overidentified, the nested χ2 test can be used to determine
whether the specification produces a significant degradation in fit relative
to the first-order solution. In this example, the higher-order solution is
found to be equally good fitting, χ2

diff(1) = 0.035, ns (i.e., 82.703 – 82.668,
df = 49 – 48). The gain of one degree of freedom in this particular higher-
order model is caused by the model’s attempting to account for the six cor-
relations among the lower-order factors with one less freely estimated
parameter (i.e., 4 higher-order factor loadings, 1 correlation between
higher-order factors = 5).

In addition to goodness of fit, the acceptability of the higher-order
model must be evaluated with regard to the magnitude of the higher-order
parameters; that is, size of higher-order factor loadings and higher-order
factor correlations. The completely standardized estimates from this solu-
tion are presented in Table 8.3. Each of the first-order factors loads
strongly onto the second-order factors (range of loadings = .81–.83). The
estimates provided in the psi matrix indicate the proportion of variance in
the lower-order factors that is not explained by the second-order factors
(i.e., completely standardized disturbances). Using these estimates, it can
be seen that the higher-order factors account for 66%–68% of the variance
in the first-order factors; for example, Express Emotion, 1 – .3185 = .6815.
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TABLE 8.3. Selected Output (LISREL) of Higher-Order CFA Model of Coping

Completely Standardized Solution

LAMBDA-Y

PROBSLV COGRES EXPREMOT SOCSPT
———— ———— ———— ————

P1 0.9108 - - - - - -
P2 0.8644 - - - - - -
P3 0.8787 - - - - - -
C1 - - 0.8876 - - - -
C2 - - 0.8740 - - - -
C3 - - 0.9044 - - - -
E1 - - - - 0.8733 - -
E2 - - - - 0.9284 - -
E3 - - - - 0.8601 - -
S1 - - - - - - 0.9008
S2 - - - - - - 0.8965
S3 - - - - - - 0.8863

GAMMA

PROBFOC EMOTFOC
———— ————

PROBSLV 0.8118 - -
COGRES 0.8159 - -

EXPREMOT - - 0.8255
SOCSPT - - 0.8116

Correlation Matrix of ETA and KSI

PROBSLV COGRES EXPREMOT SOCSPT PROBFOC EMOTFOC
———— ———— ———— ———— ———— ————

PROBSLV 1.0000
COGRES 0.6624 1.0000

EXPREMOT 0.2018 0.2028 1.0000
SOCSPT 0.1984 0.1994 0.6699 1.0000

PROBFOC 0.8118 0.8159 0.2485 0.2443 1.0000
EMOTFOC 0.2444 0.2457 0.8255 0.8116 0.3011 1.0000

PSI

PROBSLV COGRES EXPREMOT SOCSPT
———— ———— ———— ————

0.3410 0.3343 0.3185 0.3414

THETA-EPS

P1 P2 P3 C1 C2 C3
———— ———— ———— ———— ———— ————

0.1705 0.2529 0.2279 0.2122 0.2361 0.1820

THETA-EPS

E1 E2 E3 S1 S2 S3
———— ———— ———— ———— ———— ————

0.2374 0.1380 0.2602 0.1886 0.1963 0.2145



The correlation between the higher-order factors is estimated to be .301
(seen in “Correlation Matrix of ETA and KSI” section of output).

Because the higher-order solution did not result in a significant
decrease in model fit, it can be concluded that the model provided a good
account for the correlations among the first-order factors. This can be
demonstrated using the tracing rules presented in earlier chapters (e.g.,
Chapter 3). For example, in the first-order CFA model, the correlation
between Problem Solving and Cognitive Restructuring was .66 (see Table
8.1). Multiplying the higher-order factor loadings of Problem Focus →
Problem Solving and Problem Focus → Cognitive Restructuring perfectly
reproduces this correlation; that is, .812(.816) = .66. Similarly, in the ini-
tial CFA solution, the correlation between Problem Solving and Express
Emotions was estimated to be .196. This relationship is accounted for mul-
tiplying the following three parameters: Problem Focus → Problem
Solving (.812), Emotion Focus → Express Emotion (.823), correlation
between Problem Focus and Emotion Focus (.301); that is,
.812(.823)(.301) = .20.

Schmid-Leiman Transformation

The researcher can use the estimates provided by the completely standard-
ized solution to estimate the relationship of the observed measures to the
higher-order factors. This is calculated by multiplying the appropriate
higher-order and first-order factor loadings. For instance, the completely
standardized effect of Problem Focus Coping on indicator P1 is .74; that is,
.812(.911). This can be interpreted as the indirect effect of the higher-
order factor on the indicator; for example, the effect of Problem Focused
Coping on P1 is mediated by Problem Solving. However, because the
higher-order factors have no direct effects on the indicators, these values
can also be regarded as total effects; that is, the completely standardized
relationship between Problem Focused Coping and P1 is .74. Squaring this
result provides the proportion of the variance in P1 explained by the
second-order factor, Problem Focused Coping; that is, .742 = .55.

Using a few additional simple calculations, the hierarchical solution
can be transformed to further elucidate the relationships of the first- and
second-order factors with the observed measures. This procedure was
introduced by Schmid and Leiman (1957). Although developed for use
within the EFA framework, the procedure readily generalizes to CFA. The
transformation treats first-order factors as residualized factors; that is,
second-order factors explain as much variance as possible, and the vari-

334 CONFIRMATORY FACTOR ANALYSIS FOR APPLIED RESEARCH



ance in the indicators that cannot be accounted for by second-order factors
is ascribed to the first-order factors. As Loehlin (2004) notes, whereas the
explanatory power of first-order factors is lessened by the transformation,
the substantive interpretation of first-order factors may be fostered. This is
because the residualized factor loadings of the first-order factors represent
the unique contribution of the first-order factors to the prediction of the
indicators. In addition, as a result of the transformation, the first-order fac-
tors are not correlated with second-order factors.

To illustrate this procedure, a Schmid–Leiman transformation was
conducted on the higher-order solution of coping. The results of this anal-
ysis are presented in Table 8.4 (a spreadsheet prepared in Microsoft Excel).
The two columns following the item names contain the first-order factor
loadings and second-order factor loadings that were obtained from the
hierarchical CFA (see Table 8.3). In the fourth column, each item’s loading
on the second-order factor is calculated by the product of its loading on
the first-order factor (column 2) and the first-order factor’s loading on the
second-order factor (column 3); for example, loading of indicator P1 on
Problem Focused Coping = .9108(.8118) = .7394 (the same calculation is
presented in the first paragraph of this section). The residualized first-
order loading (column 6) is computed by multiplying the first-order load-
ing (column 2) by the square root of the uniqueness of the higher-order
factor. Recall that in a completely standardized solution, a uniqueness rep-
resents the proportion of variance in an outcome (in this case, a first-order
factor) that is not explained by a factor (in this case, the second-order fac-
tor). The terms “disturbance” and “residual variance” are synonymous in
this context (cf. “E,” Figure 8.1). For example, the uniqueness of Problem
Focused Coping is estimated to be 1 – .81182 = .341 (cf. psi matrix, Table
8.3). The square roots of the uniquenesses are presented in the fifth col-
umn of Table 8.4. Thus, the residualized first-order loading of P1 is com-
puted: .9108(.5839) = .532.

The second row of calculations indicates how much variance in each
indicator is explained by the second-order factors (“Higher-Order Rsq”
column) and first-order factors (“Residualized Loading Rsq” column).
These results are obtained by squaring the indicator’s transformed loadings
on the first- and second-order factors. For example, for indicator P1, 55%
of its variance is explained by the second-order factor, Problem Focused
Coping (.7392 = .55), and 28% of its variance is explained by the first-
order factor, Problem Solving (.5312 = .28). Based on this transformation,
it could be concluded that whereas slightly more than half (55%) of the
variance in the P1 indicator is accounted for by a broader trait reflecting
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the tendency to engage in coping efforts aimed directly at resolving the
stressor (Problem Focused Coping), slightly more than a quarter of its
variance (28%) is explained by the influence of a more specific problem-
focused coping strategy (Problem Solving). The remaining 17% of P1’s
variance (i.e., 1 – .55 – .28 = .17) is not accounted for by either the first- or
second-order factors (i.e., unique variance or measurement error; cf. theta-
epsilon matrix in Table 8.3).

It is important to note that this transformation does not alter the
explanatory power of the original CFA solution; for example, the propor-
tion of unexplained variance in P1 is .17 before and after the transforma-
tion. This is also demonstrated in Table 8.4 where it is shown that the sum
of variance explained by the transformed first- and second-order factor
loadings (e.g., P1: .547 + .283 = .83; see “Sum” column) is equal to the
communalities of the first-order factor loadings (communality = squared
factor loading) obtained in the initial hierarchical solution (e.g., P1
communality = .91082 = .83; see “Loading Rsq” column). Rather, the
Schmid–Leiman procedure is simply a method of calculating the contribu-
tion of lower- and higher-order factors to the prediction of observed mea-
sures (with explanatory preference afforded to the higher-order factors).
Applied examples of this procedure can be found in Campbell-Sills et al.
(2004) and Brown et al. (2004).

SCALE RELIABILITY ESTIMATION

Point Estimation of Scale Reliability

Multiple-item measures (e.g., questionnaires) are commonly used in the
social and behavioral sciences. A key aspect of the psychometric develop-
ment of such measures is the evaluation of reliability. Reliability refers to
the precision or consistency of measurement; that is, the overall propor-
tion of true score variance to total observed variance of the measure. Early
in the process of scale development, researchers often submit the measure’s
items to factor analysis (EFA, CFA). The resulting latent structure is then
used to guide the scoring of the measure for further psychometric analyses
(e.g., convergent and discriminant validity evaluation) and, ultimately,
applied use; for example, if factor analyses reveal two factors, the measure
is deemed to have two subscales. Most often, such scoring entails unre-
fined composites where items found to load on a given factor are simply
summed or averaged (cf. Grice, 2001). The reliability of these composite
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scores is usually estimated by Cronbach’s (1951) coefficient alpha (α).
Despite its widespread popularity, researchers have long known that α is a
misestimator of scale reliability. If the scale contains no correlated mea-
surement errors, α will underestimate scale reliability unless the condition
of tau equivalence holds (Lord & Novick, 1968; Zimmerman, 1972; see
Chapter 7 for definition and evaluation of tau equivalence). However, the
condition of tau equivalence is frequently not realized in actual data sets,
in part because the units of measurement are often arbitrary (Raykov,
2001a, 2004). Further, if the measure contains correlated measurement
errors, α can either underestimate or overestimate scale reliability, depend-
ing on the underlying measurement parameters (Raykov, 2001b; Zimmer-
man, 1972). Thus, this and other research (e.g., Green & Hershberger,
2000; Komaroff, 1997; Raykov, 1997) has shown that Cronbach’s coeffi-
cient α does not provide a dependable estimate of scale reliability of
multiple-item measures.

Raykov (2001a, 2004) has developed a CFA-based method of estimat-
ing scale reliability that reconciles the problems with Cronbach’s coeffi-
cient α. As shown in the next example, an appealing feature of this
approach is that it provides an estimate of scale reliability directly in the
context of the CFA measurement model. CFA estimates of factor loadings,
error variances, and error covariances are used to calculate the scale’s true
and error variance. As noted earlier, scale reliability represents the propor-
tion of true score variance to total observed variance in the measure. This
is expressed by the following equation (Lord & Novick, 1968):

ρY = Var(T) / Var(Y) (8.1)

where ρY is the scale reliability coefficient, Var(T) is the true score variance
of the measure, and Var(Y) is the total variance of the measure. Var(Y) is
the sum of the true score variance and error variance of the measure. In the
case of a congeneric measurement model (Jöreskog, 1971a) without corre-
lated measurement errors, this equation can be re-expressed using CFA
measurement parameters as

ρ = (Σλi)2 / [(Σλi)2 + Σθii] (8.2)

where (Σλi)2 is the squared sum of unstandardized factor loadings, and
Σθii is the sum of unstandardized measurement error variances. In in-
stances where the measurement model contains correlated measurements
errors, scale reliability would be calculated as:
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ρ = (Σλi)2 / [(Σλi)2 + Σθii + 2Σθij] (8.3)

where 2Σθij is the sum of nonzero error covariances multiplied by 2. In
latent software programs that accommodate nonlinear constraints (e.g.,
LISREL), Raykov’s (2001a) procedure entails specifying three dummy
latent variables whose variances are constrained to equal the numerator
(true score variance), denominator (total variance), and corresponding
ratio of true score variance to total score variance (ρ), per the classic for-
mula for scale reliability estimation (Lord & Novick, 1968). Beginning in
version 6.0 of EQS, estimates of scale reliability (and Cronbach’s α) can be
requested using the /RELIABILITY command; for example,

/RELIABILITY
SCALE = V1,V2,V3,V4;

This procedure is now illustrated using the measurement model and
data provided in Figure 8.2. In this example, the researcher has developed
a multi-item questionnaire designed to assess subjective distress following
exposure to traumatic stressors such as natural disasters, sexual assault,
and motor vehicle accidents (the example is based loosely on a measure
developed by Horowitz, Wilner, & Alvarez, 1979). The questionnaire is
purported to assess two related dimensions of psychological reactions to
extreme stress: (1) Intrusions—intrusive thoughts, images, dreams, or
flashbacks of a traumatic event; and (2) Avoidance—overt and covert
avoidance of the traumatic event (e.g., avoidance of situations, thoughts,
feelings, reminders of the trauma). A correlated error is predicted to exist
between items Y7 and Y8 owing to a method effect (e.g., reverse wording).
The measure was administered to 500 participants.

A CFA revealed that the two-factor model provided a good fit to the
data, χ2(18) = 20.48, p = .306, SRMR = .021, RMSEA = 0.017 (90% CI =
0.00 to 0.036, CFit = .98), TLI = 1.00, CFI = 1.00 (LISREL output). The
unstandardized parameter estimates of the factor loadings, error variances,
and error covariance from this solution are provided in Table 8.5 (standard
errors and test statistics have been deleted). These estimates will be used
shortly to illustrate the calculation of point estimates of scale reliability.

Table 8.6 presents the LISREL syntax used to estimate the scale reli-
ability of the dimensions of Intrusions and Avoidance. This matrix pro-
gramming requires that a latent-Y variable specification be used, owing to
the use of nonlinear constraints (dummy latent variables). Note that while
there are only two substantive latent factors (Intrusions, Avoidance), eight
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latent variables are specified (see LE and MO lines, Table 8.6). The remain-
ing six latent variables represent the dummy latent variables needed to
convey the true score variance, total variance, and ratio of true to total
variance for the two latent dimensions of substantive interest. Accordingly,
lambda-Y is an 8 (indicator) × 8 (latent variable) matrix, but only eight
elements of this matrix are freely estimated in order to relate the observed
measures (Y1–Y8) to the substantive latent factors (see PA LY). The theta-
epsilon (TE) matrix is specified in the typical fashion (indicator measure-
ment errors are freely estimated; note error covariance of Y7 and Y8).
Because eight latent variables have been specified, psi (PS) is an 8 × 8 sym-
metric matrix. Elements PS(1,1) and PS(5,5) are fixed to 1.0 to set the
metric of the latent factors, Intrusions and Avoidance. The off-diagonal
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Sample Correlations and Standard Deviations (SDs); N = 500

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8
Y1 1.000
Y2 0.594 1.000
Y3 0.607 0.613 1.000
Y4 0.736 0.765 0.717 1.000
Y5 0.378 0.321 0.360 0.414 1.000
Y6 0.314 0.301 0.345 0.363 0.732 1.000
Y7 0.310 0.262 0.323 0.337 0.665 0.583 1.000
Y8 0.317 0.235 0.276 0.302 0.632 0.557 0.796 1.000

SD: 1.150 1.200 1.570 2.820 1.310 1.240 1.330 1.290

FIGURE 8.2. Latent structure of a questionnaire measure of distress following
exposure to traumatic stress.



element, PS(5,1) is freely estimated to obtain the covariance of Intrusions
and Avoidance. The values of the remaining diagonal elements of the psi
matrix will be determined by the constraints (CO) that follow (see Table
8.6).

The first constraint holds the value of PS(2,2) equal to the true score
variance of Intrusions. Although the mathematical operations to the right
of the equals sign do not readily convey this fact, the constrained value of
PS(2,2) is simply the squared sum of the unstandardized factor loadings of
indicators of Intrusions, that is, (Σλi)2. Because of syntax programming
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TABLE 8.5. Selected Unstandardized Parameter Estimates of Measurement
Model of the Reactions to Traumatic Stress Questionnaire

LISREL Estimates (Maximum Likelihood)

LAMBDA-Y
INTRUS AVOID
———— ————

Y1 0.8912 - -
Y2 0.9595 - -
Y3 1.1968 - -
Y4 2.6757 - -
Y5 - - 1.1942
Y6 - - 0.9954
Y7 - - 0.9701
Y8 - - 0.8938

THETA-EPS
Y1 Y2 Y3 Y4 Y5 Y6

———— ———— ———— ———— ———— ————
Y1 0.5284
Y2 - - 0.5194
Y3 - - - - 1.0325
Y4 - - - - - - 0.7931
Y5 - - - - - - - - 0.2901
Y6 - - - - - - - - - - 0.5468
Y7 - - - - - - - - - - - -
Y8 - - - - - - - - - - - -

THETA-EPS
Y7 Y8

———— ————
Y7 0.8277
Y8 0.4986 0.8652



342 CONFIRMATORY FACTOR ANALYSIS FOR APPLIED RESEARCH

TABLE 8.6. LISREL Syntax and Selected Results for Estimating Scale Reliability
of the Reactions to Traumatic Stress Questionnaire

TITLE CFA SCALE RELIABILITY
DA NI=8 NO=500 MA=CM
LA
Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8
KM
1.000
0.594 1.000
0.607 0.613 1.000
0.736 0.765 0.717 1.000
0.378 0.321 0.360 0.414 1.000
0.314 0.301 0.345 0.363 0.732 1.000
0.310 0.262 0.323 0.337 0.665 0.583 1.000
0.317 0.235 0.276 0.302 0.632 0.557 0.796 1.000
SD
1.15 1.20 1.57 2.82 1.31 1.24 1.33 1.29
MO NY=8 NE=8 LY=FU,FR TE=SY,FR PS=SY,FR
LE
INTRUS INTNUM INTDEN INTREL AVOID AVNUM AVDEN AVOIDREL
PA LY
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
PA TE
1
0 1
0 0 1
0 0 0 1
0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1 1
PA PS
0
0 1
0 0 1
0 0 0 1
1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
VA 1.0 PS(1,1) PS(5,5)
CO PS(2,2) = LY(1,1)**2+LY(2,1)**2+LY(3,1)**2+LY(4,1)**2+C

(cont.)
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TABLE 8.6. (cont.)

2*LY(1,1)*LY(2,1)+2*LY(1,1)*LY(3,1)+2*LY(1,1)*LY(4,1)+2*LY(2,1)*LY(3,1)+C
2*LY(2,1)*LY(4,1)+2*LY(3,1)*LY(4,1)
CO PS(3,3) = LY(1,1)**2+LY(2,1)**2+LY(3,1)**2+LY(4,1)**2+C
2*LY(1,1)*LY(2,1)+2*LY(1,1)*LY(3,1)+2*LY(1,1)*LY(4,1)+2*LY(2,1)*LY(3,1)+C
2*LY(2,1)*LY(4,1)+2*LY(3,1)*LY(4,1)+TE(1,1)+TE(2,2)+TE(3,3)+TE(4,4)
CO PS(4,4) = PS(2,2)*PS(3,3)**-1
CO PS(6,6) = LY(5,5)**2+LY(6,5)**2+LY(7,5)**2+LY(8,5)**2+C
2*LY(5,5)*LY(6,5)+2*LY(5,5)*LY(7,5)+2*LY(5,5)*LY(8,5)+2*LY(6,5)*LY(7,5)+C
2*LY(6,5)*LY(8,5)+2*LY(7,5)*LY(8,5)
CO PS(7,7) = LY(5,5)**2+LY(6,5)**2+LY(7,5)**2+LY(8,5)**2+C
2*LY(5,5)*LY(6,5)+2*LY(5,5)*LY(7,5)+2*LY(5,5)*LY(8,5)+2*LY(6,5)*LY(7,5)+C
2*LY(6,5)*LY(8,5)+2*LY(7,5)*LY(8,5)+ TE(5,5)+TE(6,6)+TE(7,7)+TE(8,8)+C
2*TE(8,7)
CO PS(8,8) = PS(6,6)*PS(7,7)**-1
OU ME=ML SC AD=OFF ND=4

Selected Results

LISREL Estimates (Maximum Likelihood)
PSI

INTRUS INTNUM INTDEN INTREL AVOID AVNUM

———— ———— ———— ———— ———— ————
INTRUS 1.0000
INTNUM - - 32.7543

(2.2588)
14.5009

INTDEN - - - - 35.6277
(2.2555)
15.7962

INTREL - - - - - - 0.9193
AVOID 0.4857 - - - - - - 1.0000

(0.0389)
12.5013

AVNUM - - - - - - - - - - 16.4307
(1.2664)
12.9740

AVDEN - - - - - - - - - - - -
AVOIDREL - - - - - - - - - - - -

PSI

AVDEN AVOIDREL
———— ————

AVDEN 19.9577
(1.2631)
15.8008

AVOIDREL - - 0.8233



restrictions in LISREL (i.e., parentheses are not permitted in CO com-
mands except in matrix elements), the squared sum of factor loadings
must be calculated by summing the squared factor loadings, for example,
LY(1,1)**2, with the sum of the product of each factor loading pair multi-
plied by 2, for example, 2*LY(1,1)*LY(2,1). For instance, if x1 = 4, x2 = 3:

(Σxi)2 = 42 + 32 + 2(4 ∗ 3) = 49

The “C” at the end of this and other constraint commands is used to
inform LISREL that the statement continues on the next line.

The next constraint, CO PS(3,3), represents the denominator of the
scale reliability formula; in this case, the total variance of Intrusions. This
is calculated by adding the sum of indicator error variances (unstandard-
ized theta-epsilon estimates for Y1, Y2, Y3, and Y4) to the true score vari-
ance of Intrusions. The constraint on PS(4,4) provides the proportion of
true score variance to the total variance of Intrusion; that is, the point esti-
mate of the scale reliability of Intrusions. Division is not permitted in
LISREL (or in matrix algebra), so this estimate is calculated using a nega-
tive exponent; that is, CO PS(4,4) = PS(2,2) ∗ PS(3,3)**–1.

The calculation of the true score variance, total variance, and propor-
tion of true to total variance (scale reliability) is performed in the same
fashion for the dimension of Avoidance; see constraints for PS(6,6),
PS(7,7), and PS(8,8), respectively (Table 8.6). The only difference is that
the error covariance of indicators Y7 and Y8 must be included in the total
variance of Avoidance. This is reflected by the addition of “2*TE(8,7)” at
the end of the CO PS(7,7) command.

Selected results of this analysis are presented in Table 8.6. Although
not shown in the table, this specification provides the same fit to the data
as the CFA without nonlinear constraints, for example, χ2 (18) = 20.48.
Estimates provided in the psi matrix include the true score variance, total
variance, and proportion of true to total variance (scale reliability) of
Intrusions and Avoidance. For example, the true score and total variance
of Intrusions is 32.75 and 35.63, respectively. The point estimate of the
scale reliability (ρ) of Intrusions is .919; that is, 32.75 / 35.63 (92% of the
total variance of Intrusions is true score variance). The scale reliability (ρ)
estimate for Avoidance is .823; that is, 16.43 / 19.96.

Because the computation of ρ and the current CFA model are not
complex, the scale reliability of Intrusions and Avoidance could be readily
calculated by hand. Using the estimates provided in Table 8.5, the true
score variance of Intrusions would be
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(0.8912 + 0.9595 + 1.1968 + 2.6757)2 = (5.723)2 = 32.75
(8.4)

(cf. INTNUM, Table 8.6). The total variance of Intrusions would be com-
puted as

32.75 + 0.5284 + 0.5194 + 1.0325 + 0.7931 = 35.63 (8.5)

(cf. INTDEN, Table 8.6).
In addition to estimating scale reliability within complex CFA models

(e.g., multiple latent factors, indicators, and error covariances), the afore-
mentioned LISREL parameterization can be adapted for various extensions
of this methodology such as testing for differences in scale reliability
across groups (Raykov, 2002a).

In applied research, the reliability of the dimensions (“subscales”) of a
questionnaire is usually estimated by Cronbach’s α. In the current data
set, Cronbach’s α for the Intrusions indicators is .840. For Avoidance,
Cronbach’s α is .845. Although the population values of the measurement
parameters in this example are not known, it can be presumed that
Cronbach’s α underestimated the reliability of Intrusions (cf. ρ = .919)
because the condition of tau equivalence was not present (see the SD and
factor loading of Y4). However, Cronbach’s α overestimated the reliability
of Avoidance (cf. ρ = .823) owing to the presence of an error covariance
involving items Y7 and Y8.

Standard Error and Interval Estimation
of Scale Reliability

The preceding section illustrated how one may obtain a point estimate of
scale reliability within the CFA framework. Although representing the
“optimal” estimate, this point estimate should not be regarded as the
“true” (population) value of a scale’s reliability coefficient. Indeed, a point
estimate contains no information about how closely (or distantly) it
approximates the population value. Thus, as with other parameter esti-
mates (e.g., means, factor loadings), it is helpful to calculate confidence
intervals (CI) for point estimates of scale reliability. Interval estimation
provides the range of plausible values that the population value is within.
The degree of confidence to which the population value is contained with-
in the CI is stated in terms of a probability or percentage; the CI most often
used in the social and behavioral sciences is the 95% CI.
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Confidence intervals are typically calculated by adding and subtract-
ing from the point estimate the product of an appropriate z value and the
standard error (SE) of the estimate. For instance, in Chapter 4, it was
shown that the 95% CI of a factor loading could be calculated as

95% CI (λ) = λ ± 1.96SE(λ) (8.6)

If λ = 1.05, and SEλ = .05, the 95% CI is .952–1.148 (the value of 1.96 is
taken from the z distribution; i.e., 95% of all scores in a normal distribu-
tion occur between –1.96 and +1.96 SDs from the mean). Thus, with a
high degree of confidence (95%), we can assert that the true population
value of λ lies between .952 and 1.148.

These calculations are straightforward because latent variable soft-
ware programs provide SEs in addition to the point estimates of the vari-
ous parameters. To compute the CI of a point estimate of scale reliability,
its SE must be obtained. Raykov (2002b) has developed a method for the
estimation of SE and CI of scale reliability within the CFA framework. This
method furnishes an approximate SE of ρ in the form

SE(ρ) = SQRT[D1
2Var(u) + D2

2Var(v) + 2D1D2Cov(u,v)] (8.7)

where u is the sum of estimated unstandardized factor loadings, v is the
sum of estimated error variances, Cov(u,v) is the covariance of u and v (if
any), and D1 and D2 are the partial derivatives of the scale reliability coeffi-
cient (ρ) with respect to u and v. D1 and D2 are obtained by the following
formulas:

D1 = 2uv / (u2 + v)2 (8.8)
D2 = u2 / (u2 + v)2 (8.9)

Once the SE is obtained, the 95% CI of ρ is easily computed using the for-
mula

95% CI (ρ) = ρ ± 1.96SE(ρ) (8.10)

Other CIs can be estimated by substituting the appropriate z value; for
example, 90% CI (ρ) = ρ ± 1.645SE(ρ).

The Raykov (2002b) procedure for interval estimation requires two
analytic steps. In the first step, a latent variable software program that
accommodates nonlinear constraints (e.g., LISREL) is used to obtain the
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estimates of u and v and their variances and covariance. LISREL syntax for
this step is shown in Table 8.7, again using the two-factor measurement
model of the reactions to the traumatic stress questionnaire. Using a
latent-Y specification, six latent variables are specified: Intrusions and
Avoidance, and four dummy latent variables of their corresponding us and
vs. The programming of the LY, TE, and PS matrices follows along the
same lines as the approach used to estimate scale reliability (cf. Table 8.6).
In this case, certain diagonal elements of the psi (PS) matrix are con-
strained to equal the values of u and v for Intrusions and Avoidance. For
example, PS(2,2) equals the sum of the unstandardized factor loadings of
the Intrusion indicators (u, labeled “UINT” in the syntax). PS(3,3) equals
the sum of the error variances of these indicators (v, labeled “VINT”). The
remaining two constraints produce u and v for Avoidance (“UAVD” and
“VAVD,” respectively); note that the error covariance of Y7 and Y8 is
included in the calculation of v. On the output (OU) line, the keyword
“ALL” is included (Table 8.7). When “ALL” is requested, the LISREL out-
put includes the variance–covariance matrix of the parameter estimates,
which are also needed in the calculation of SE(ρ).

Table 8.7 presents selected output of this analysis. Although not
shown in Table 8.7, this model specification provides the same fit to the
data as the initial CFA without nonlinear constraints; for example, χ2(18)
= 20.48. In the psi matrix, u and v values for Intrusions and Avoidance are
on the diagonal (SEs and test statistics have been deleted from the output);
for example, u for Intrusions = 5.723 (the same value that was hand calcu-
lated in the preceding section of this chapter, using unstandardized factor
loadings in Table 8.5). Below this output is the portion of the covariance
matrix of parameter estimates needed for computation of SE(ρ). The first
two diagonal elements are the variances of u and v (i.e., 0.0389 and
0.0223, respectively) for Intrusions (cf. Var(u) and Var(v)) in the formula
for SE(ρ). The remaining two diagonal elements are the variances of u and
v (0.0244 and 0.0425, respectively) for Avoidance. The immediate off-
diagonal elements of these values are the covariances of u and v
(cf. Cov(u,v)) in SE(ρ) formula. The covariances are –0.0016 and –0.0031
for Intrusions and Avoidance, respectively.

In the second step, these values are used in a set of simple calculations
that, for convenience, can be performed in a major software program such
as SPSS or SAS. Table 8.8 provides SPSS syntax for calculating D1, D2, scale
reliability (SR), the standard error (SE), and the 95% confidence interval
(CI95LO, CI95HI) using the values of u, v, Var(u), Var(v), and Cov(u,v)
obtained in the prior LISREL analysis (and the formulas presented earlier
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TABLE 8.7. LISREL Syntax and Selected Results for Computing Standard Errors
and Confidence Intervals for Point Estimates of Scale Reliabilities of the Reactions
to Traumatic Stress Questionnaire (Step 1)

TITLE CFA SCALE RELIABILITY: STD ERRORS AND CONFIDENCE INTERVALS
(STEP ONE)

DA NI=8 NO=500 MA=CM
LA
Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8
KM
1.000
0.594 1.000
0.607 0.613 1.000
0.736 0.765 0.717 1.000
0.378 0.321 0.360 0.414 1.000
0.314 0.301 0.345 0.363 0.732 1.000
0.310 0.262 0.323 0.337 0.665 0.583 1.000
0.317 0.235 0.276 0.302 0.632 0.557 0.796 1.000
SD
1.15 1.20 1.57 2.82 1.31 1.24 1.33 1.29
MO NY=8 NE=6 LY=FU,FR TE=SY,FR PS=SY,FR
LE
INTRUS UINT VINT AVOID UAVD VAVD
PA LY
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 1 0 0
PA TE
1
0 1
0 0 1
0 0 0 1
0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1 1
PA PS
0
0 1
0 0 1
1 0 0 0
0 0 0 0 1
0 0 0 0 0 1
VA 1.0 PS(1,1) PS(4,4)
CO PS(2,2) = LY(1,1)+LY(2,1)+LY(3,1)+LY(4,1)
CO PS(3,3) = TE(1,1)+TE(2,2)+TE(3,3)+TE(4,4)

(cont.)



in this section). As shown in this table, the SPSS calculations reproduce
the point estimates of scale reliability obtained previously in LISREL;
ρs = .919 and .823 for Intrusions and Avoidance, respectively. For Intru-
sions, the standard error of ρ is 0.0066. Using this value, the 95% CI for
scale reliability point estimate of .919 is found to be .9065–.9322; that is,
95% CI = .919 ± 1.96(0.0066). Thus, while the population reliability of
Intrusions is unknown, with a considerable degree of confidence we can
assert that it lies between the values of .9065 and .9322, with .919 being
the optimal estimate. It is noteworthy that the Cronbach’s α estimate of
reliability (.84) falls well below the lower range of this CI. For Avoidance,
the standard error of ρ is 0.0147, and thus the 95% CI of this point esti-
mate (.8233) is .7944–.8521. In this case, the Cronbach’s α estimate of
.845 falls within the upper range of this CI.

These CFA-based procedures (Raykov, 2001a, 2002b) represent a very
useful and more dependable method of calculating point and interval esti-
mates of scale reliability. Raykov has developed a number of important
extensions to this work, including the estimation of scale reliability in con-
text of noncongeneric scales (Raykov & Shrout, 2002), weighted scales
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TABLE 8.7. (cont.)

CO PS(5,5) = LY(5,4)+LY(6,4)+LY(7,4)+LY(8,4)
CO PS(6,6) = TE(5,5)+TE(6,6)+TE(7,7)+TE(8,8)+2*TE(8,7)
OU ME=ML ALL ND=4

Selected Results

LISREL Estimates (Maximum Likelihood)
PSI

INTRUS UINT VINT AVOID UAVD VAVD
———— ———— ———— ———— ———— ————

INTRUS 1.0000
UINT - - 5.7231
VINT - - - - 2.8734

AVOID 0.4857 - - - - 1.0000
UAVD - - - - - - - - 4.0535
VAVD - - - - - - - - - - 3.5270

Covariance Matrix of Parameter Estimates
PS 2,2 PS 3,3 PS 5,5 PS 6,6

———— ———— ———— ————
PS 2,2 0.0389
PS 3,3 -0.0016 0.0223
PS 5,5 0.0055 0.0000 0.0244
PS 6,6 0.0000 0.0000 -0.0031 0.0425
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TABLE 8.8. SPSS Syntax for Computing Standard Errors and Confidence
Intervals for Point Estimates of Scale Reliabilities of the Reactions to Traumatic
Stress Questionnaire (Step 2)

TITLE SPSS SYNTAX FOR SE AND CI OF SR POINT ESTIMATES:
INTRUSION SUBSCALE.

COMPUTE U = 5.7231.
COMPUTE V = 2.8734.
COMPUTE D1 = (2*u*v) / (U**2 + V)**2.
COMPUTE D2 = -U**2 / (U**2 + V)**2.
COMPUTE VARU = 0.0389.
COMPUTE VARV = 0.0223.
COMPUTE COVUV = -0.0016.
COMPUTE SR = U**2 / (U**2 + V).
COMPUTE SE = SQRT(D1**2*VARU+D2**2*VARV+2*D1*D2*COVUV).
COMPUTE CI95LO = SR-1.96*SE.
COMPUTE CI95HI = SR+1.96*SE.

LIST SR SE CI95LO CI95HI.

SR SE CI95LO CI95HI

0.9193 0.0066 0.9065 0.9322

TITLE SPSS SYNTAX FOR SE AND CI OF SR POINT ESTIMATES:
AVOIDANCE SUBSCALE.

COMPUTE U = 4.0535.
COMPUTE V = 3.527.
COMPUTE D1 = (2*u*v) / (U**2 + V)**2.
COMPUTE D2 = -U**2 / (U**2 + V)**2.
COMPUTE VARU = 0.0244.
COMPUTE VARV = 0.0425.
COMPUTE COVUV = -0.0031.
COMPUTE SR = U**2 / (U**2 + V).
COMPUTE SE = SQRT(D1**2*VARU+D2**2*VARV+2*D1*D2*COVUV).
COMPUTE CI95LO = SR-1.96*SE.
COMPUTE CI95HI = SR+1.96*SE.

LIST SR SE CI95LO CI95HI.

SR SE CI95LO CI95HI

0.8233 0.0147 0.7944 0.8521



(Raykov, 2001a), and scales with higher-order factor structure (Raykov &
Shrout, 2002). In addition, these procedures can be adapted to test for sig-
nificant change in composite reliability as the result of scale refinement
(e.g., addition or deletion of items; Raykov & Grayson, 2003) and to
test whether scale reliabilities significantly differ across groups (Raykov,
2002a). Use of some of these extensions in applied research can be found
in Brown et al. (2004) and Campbell-Sills et al. (2004).

MODELS WITH FORMATIVE INDICATORS

All CFA examples discussed thus far in this book have entailed models
with reflective indicators (also referred to as effects indicators). In a model
with reflective indicators, the paths relating the indicators to the factor
(i.e., factor loadings) emanate from the latent variable to the indicator
(e.g., Figure 8.2). In accord with classical test theory (Lord & Novick,
1968), the direction of causality is from the latent construct to the
observed measure. For indicators specified to load on a given factor, the
latent variable should explain most of the covariation among the observed
measures; for example, in Figure 8.2, the only reason that indicators
Y1–Y4 are intercorrelated is that they share a common cause—the under-
lying construct of Intrusions. Related to this is the fact that measurement
error in reflective models is taken into account at the indicator level (i.e.,
the εs in Figure 8.2). Moreover, given that the direction of causality is from
the factor to the observed measures, a change in the latent variable will
result in a change in all constituent indicators. In such models, the indica-
tors of a given latent factor are considered to be interchangeable. For
instance, eliminating the Y4 indicator from the Figure 8.2 model would
not alter the meaning of the Intrusions latent factor.

In many scenarios, it may be more natural to define a construct as
being influenced by a set of indicators. In formative indicator models (also
referred to as composite cause or cause indicators), the direction of causality
is from the observed measures to the construct (Bollen, 1989; Bollen &
Lennox, 1991; Edwards & Bagozzi, 2000; MacCallum & Browne, 1993).
An oft-used example is that of socioeconomic status (SES), whose causal
indicators might be income, education level, and occupational status. In
this case, it seems more reasonable to assert that these three variables are
the cause of one’s SES than the converse, which would claim income, edu-
cation level, and occupational status are interrelated because they share
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the common underlying cause of SES. The term composite cause is some-
times used in reference to such models because the latent variable is pos-
ited to be a construct that is a weighted, linear combination of its observed
measures, plus error. Although rarely considered in some substantive
domains (e.g., mental health research), formative indicator models are
very common in many fields, such as marketing, economics, and con-
sumer research (e.g., Diamantopoulos & Winklhofer, 2001; Jarvis, Mac-
Kenzie, & Podsakoff, 2003). Path diagrams of models containing forma-
tive indicators are presented in Figure 8.3. In these examples, Chronic Life
Stress is the composite latent variable influenced by a variety of stressful
events (e.g., financial difficulties, interpersonal conflict). In practice,
causal measures are usually single indicators, although higher-order factor
analysis can be extended to specify first-order factors as causes of second-
order constructs (cf. Jarvis et al., 2003).

In addition to the direction of construct–indicator causality, the
assumptions of formative indicator models differ from those of reflective
indicator models in other important ways. First, in the formative model,
although the cause indicators are specified to be intercorrelated (see Fig-
ure 8.3), the correlations among the indicators are not relevant to the
goodness of fit and conceptual viability of the model (except for the issue
of multicollinearity, which would indicate undue redundancy in the indi-
cator set used to form the composite latent variable). In other words, the
formative indicators may influence the composite construct independently
of one another. For example, SES will increase if income increases even
when education and occupation status remain the same. Similarly, finan-
cial difficulties should increase chronic life stress when job stress and
interpersonal conflicts are static (Figure 8.3). Thus, causal indicators of a
concept can be positively or negatively correlated or have no association
whatsoever. Second, as is not the case with reflective models, eliminating a
formative indicator from the measurement model is apt to change the
meaning of the composite construct; that is, because the construct is a
weighted, linear combination of all its observed measures. Formative indi-
cators are not interchangeable. If the income indicator is omitted from the
SES composite, part of the construct of SES is not represented. Elimination
of the financial difficulties indicator removes an important variable that
contributes to chronic life stress. Finally, although identification issues
must be considered (discussed below), measurement error in the forma-
tive indicator model is taken into account at the latent construct level (i.e.,
the disturbance of the composite variable, E; see Figure 8.3), not at the
indicator level (i.e., εs in Figure 8.2).
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Model A: Single Construct Defined Solely by Formative Indicators (Unidentified)

Model B: Single Construct Defined by Formative and Reflective Indicators (Identified)

Model C: Formative Indicator Construct Predicting a Reflective Indicator Construct
(Unidentified)

(cont.)

FIGURE 8.3. Examples of unidentified and identified models with formative
indicators. X1, financial difficulties; X2, job stress; X3, interpersonal/familial con-
flict; X4, health problems (self); X5, health problems (significant others); Y1–Y3,
indicators of life satisfaction; Y4–Y6, indicators of optimism with life; E*, distur-
bance parameter freely estimated; E = 0, disturbance parameter fixed to zero.
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Model D: Formative Indicator Construct Predicting a Reflective Indicator Construct
(Identified by fixing disturbance of composite latent variable to zero)

Model E: Formative Indicator Construct Predicting a Reflective Indicator Construct
(Identified by including reflective indicators on the latent composite variable)

Model F: Formative Indicator Construct Predicting More Than One Reflective Indicator
Construct (Identified)

FIGURE 8.3. (cont.)



Identification problems are an issue in models with formative indica-
tors (MacCallum & Browne, 1993). The core aspects of model identifica-
tion discussed in Chapter 3 apply to formative indicator models; for exam-
ple, the degrees of freedom of the model must be at least zero, and the
latent variable must be provided a scale. The metric of the latent composite
variable can be defined either by fixing a formative indicator path to one
(e.g., see Figure 8.3A) or by fixing the factor variance to unity. Although
necessary, these conditions are not sufficient to identify a model contain-
ing formative indicators. Indeed, as in some CFAs of multitrait–multi-
method matrices (e.g., correlated methods models, Chapter 6), identifica-
tion problems are common in some types of models with formative
indicators.

Figure 8.3 presents several examples of identified and unidenti-
fied models that contain formative indicators. Measurement models that
consist solely of formative indicators are not identified (Figure 8.3A).
MacCallum and Browne (1993) note that many identification problems of
formative indicator constructs stem from indeterminacies associated with
the construct-level error term (i.e., the “E” in Figure 8.3A). Depending on
the nature of the model, these indeterminacies can be resolved in various
ways. As shown in Figure 8.3B, the identification problem can be ad-
dressed by adding two reflective indicators to the formative construct. This
strategy should not be employed simply to identify the model. Indeed, this
approach may not be appropriate if it cannot be justified on substantive
grounds. In the current example (Figure 8.3B), note that the X4 and X5
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Model G: Formative Indicator Construct Predicting More Than One Reflective Indicator
Construct (Unidentified)

FIGURE 8.3. (cont.)



indicators (which really should be labeled as Y indicators in Figure 8.3B
because they are predicted by the formative construct) are measures of
health problems in the respondent and his or her significant others. A
compelling conceptual argument for treating X4 and X5 as reflective indi-
cators could perhaps be forwarded in this instance; that is, although health
problems are often construed as stressors, they can be caused by exposure
to chronic life stress (e.g., job and family stress; cf. Figure 8.3). If the iden-
tification issue can be remedied in this manner, the formative construct is
identified on its own and can reside anywhere in the measurement or
structural model (e.g., as a latent-X or latent-Y variable, as a factor in a
CFA model). This strategy carries the advantage of modeling flexibility
(e.g., Figure 8.3E). For instance, if the formative construct is included in a
broader CFA model, its discriminant validity and measurement parameters
can be fully evaluated (Jarvis et al., 2003).

Models are also not identified if the formative construct predicts a sin-
gle reflective construct (Figure 8.3C). One way the indeterminacy of the
construct error term could be addressed is by fixing the disturbance of the
composite latent variable to zero (Figure 8.3D).2 However, this approach is
often unreasonable because it assumes that the formative indicators repre-
sent the composite latent construct perfectly (cf. principal components
analysis, Chapter 2; canonical correlation, Thompson, 1984). It was noted
in the preceding paragraph that the error term of the formative construct
could be freely estimated if the latent composite contains some reflective
indicators. In fact, unlike the case in the Figure 8.3B model, only one
reflective indicator is needed to identify the model depicted in Figure 8.3E.
But if either strategy shown in Figure 8.3D or Figure 8.3E is employed, the
issue of equivalent models must be considered (discussed below).

The residual variances of composite latent variables may be identified
if the formative construct emits paths to two or more latent constructs
defined by reflective indicators. An identified model is shown in Figure
8.3F where the formative construct of Chronic Life Stress predicts the
reflective constructs of Satisfaction with Life and Optimism. In order for
the identification problem to be resolved, there must be no relationship
specified between the two latent-Y reflective constructs. Figure 8.3G
depicts an unidentified model where both Chronic Life Stress and Satisfac-
tion with Life have direct effects on Optimism. The same problem would
arise if a correlated disturbance was specified between Satisfaction with
Life and Optimism. Thus, models along the lines of Figure 8.3F, while
more apt to be empirically identified, may also be substantively unreason-
able. For instance, the model specification in Figure 8.3F indicates that the
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relationship between Satisfaction with Life and Optimism is spurious (i.e.,
fully accounted for by Chronic Life Stress), an assertion that may be at
odds with theory (e.g., a conceptual model that posits life satisfaction to be
a predictor of optimism). The identification issue could also be addressed
by including reflective indicators on the composite latent variable, if justi-
fied.

In addition to identification, the issue of equivalent models (see
Chapter 5) must be considered in solutions involving formative indicators.
Models with formative indicators may be statistically equivalent to MIMIC
models (Chapter 7), where reflective latent constructs are predicted by sin-
gle indicators but no direct effects of the covariates on the reflective indi-
cators are specified (cf. Figure 7.5, Chapter 7). Figure 8.4 provides two
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MIMIC Model A (Equivalent to Model D in Figure 8.3)

MIMIC Model B (Equivalent to Model E in Figure 8.3)

FIGURE 8.4. Equivalence of formative indicator models to MIMIC models. X1,
financial difficulties; X2, job stress; X3, interpersonal/familial conflict; X4, health
problems (self); X5, health problems (significant others); Y1–Y3, indicators of life
satisfaction.



MIMIC models equivalent to formative construct models presented in Fig-
ure 8.3. Figure 8.4A depicts a model where the Satisfaction with Life latent
variable is regressed onto the five single indicators of different forms of life
stress. Although a different set of regressive parameter estimates will be
obtained (i.e., five direct effects between the single indicators and Satisfac-
tion with Life), the Figure 8.4A model will provide exactly the same pre-
dicted covariance matrix and goodness-of-fit statistics as the model shown
in Figure 8.3D. Similarly, the model shown in Figure 8.3E could be alter-
natively construed as a model with two reflective constructs (Health Prob-
lems, Satisfaction with Life; see Figure 8.4B) in which one of the factors
(Health Problems) is predicted by three background variables (X1, X2,
X3). These single indicators may have indirect effects on Satisfaction with
Life, as fully mediated by Health Problems. Although quite different con-
ceptually, the models depicted in Figure 8.3E and Figure 8.4B will produce
the same fitted covariance matrix. As noted in Chapter 5, the procedures
of CFA/SEM cannot inform the researcher on the comparative validity of
these solutions.

To foster the reader’s understanding of how models with formative
constructs are specified, a data-based example is provided in Figure 8.5.
This model is identical to the model presented in Figure 8.3F, except that
the formative construct of Chronic Life Stress is caused by three indicators
instead of five. Mplus syntax is provided in Table 8.9. The latent endoge-
nous factors of Satisfaction with Life and Optimism are programmed in the
usual way (e.g., the Mplus default is to automatically set the first indicator
listed—in this case Y1 and Y4—as the marker indicator). In order for
Mplus to recognize chronic stress (Stress) as a latent variable, the pro-
gramming indicates that Stress is “measured by” (i.e., the BY keyword)
Life Satisfaction (Satis) and Optimism (Optim). Although the BY keyword
is typically used in reference to factor loadings, the actual parameters
involved are paths (beta, β) of the regressions of Satisfaction with Life and
Optimism on the composite latent variable, Chronic Life Stress. In addi-
tion, a “*” is used to override the Mplus default of fixing the unstandard-
ized parameter of Stress → Satis to 1.0; instead, this regressive path is
freely estimated (*). The statement STRESS ON X1@1 X2 X3 regresses the
formative construct of Chronic Life Stress onto its three causal indicators.
The parameter relating X1 to Chronic Life Stress is fixed to 1.0 to define
the metric of the composite latent variable. All three disturbances (E) are
freely estimated by Mplus default. It is also an Mplus default to freely
intercorrelate exogenous variables; in this case, the relationships among
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X1, X2, and X3. But to make the details of formative construct specifica-
tion more explicit, these interrelationships are written out in the Mplus
syntax example.

The Figure 8.5 model fits the data well; for example, χ2(22) = 2.17,
p = 71.00. The parameter estimates provided in Table 8.9 should be self-
explanatory if the reader is comfortable interpreting prior examples in this
book (e.g., MIMIC models). Although the measurement model holds up
well and the composite latent variable is significantly related to Satisfac-
tion with Life and Optimism (i.e., zs = 3.805 and 3.357, respectively), the
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Correlations (and SDs, N = 500):

Y1 Y2 Y3 Y4 Y5 Y6 X1 X2 X3
Y1 1.000
Y2 0.700 1.000
Y3 0.713 0.636 1.000
Y4 0.079 0.066 0.076 1.000
Y5 0.088 0.058 0.070 0.681 1.000
Y6 0.084 0.056 0.074 0.712 0.633 1.000
X1 0.279 0.248 0.240 0.177 0.155 0.170 1.000
X2 0.250 0.214 0.222 0.157 0.143 0.152 0.373 1.000
X3 0.280 0.236 0.251 0.173 0.178 0.171 0.448 0.344 1.000

SD: 2.5 2.1 3.0 4.1 3.9 4.4 1.2 1.0 1.2

FIGURE 8.5. Path diagram and input data for example of a model containing a
formative construct. X1, financial difficulties; X2, job stress; X3, interpersonal/
familial conflict; Y1–Y3, indicators of life satisfaction; Y4–Y6, indicators of opti-
mism.
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TABLE 8.9. Mplus Syntax and Selected Results for Model
with a Formative Construct

Syntax File

TITLE: MPLUS PROGRAM FOR MODEL WITH A FORMATIVE CONSTRUCT
DATA: FILE IS STRESS.DAT;

TYPE IS STD CORR;
NOBS ARE 500;

VARIABLE: NAMES ARE Y1 Y2 Y3 Y4 Y5 Y6 X1 X2 X3;
ANALYSIS: ESTIMATOR=ML;
MODEL: SATIS BY Y1 Y2 Y3;

OPTIM BY Y4 Y5 Y6;
STRESS BY SATIS* OPTIM;
STRESS ON X1@1 X2 X3;
X1 WITH X2 X3; X2 WITH X3;

OUTPUT: SAMPSTAT MODINDICES(4.0) STAND FSDETERMINACY RESIDUAL;

Selected Results

MODEL RESULTS
Estimates S.E. Est./S.E. Std StdYX

SATIS BY
Y1 1.000 0.000 0.000 2.217 0.888
Y2 0.746 0.038 19.571 1.655 0.789
Y3 1.086 0.054 19.931 2.409 0.804

OPTIM BY
Y4 1.000 0.000 0.000 3.580 0.874
Y5 0.848 0.045 18.733 3.035 0.779
Y6 1.000 0.051 19.441 3.579 0.814

STRESS BY
SATIS 0.317 0.083 3.805 0.402 0.402
OPTIM 0.338 0.101 3.357 0.266 0.266

STRESS ON
X1 1.000 0.000 0.000 0.355 0.425
X2 1.054 0.445 2.369 0.374 0.374
X3 1.073 0.435 2.469 0.381 0.456

X1 WITH
X2 0.447 0.057 7.815 0.447 0.373
X3 0.644 0.070 9.142 0.644 0.448

X2 WITH
X3 0.412 0.057 7.274 0.412 0.344

Variances
X1 1.437 0.091 15.811 1.437 1.000
X2 0.998 0.063 15.811 0.998 1.000
X3 1.437 0.091 15.811 1.437 1.000

(cont.)



substantive significance of the results might be questioned on the basis of
the magnitude of these structural relations (e.g., Chronic Life Stress
accounts for 7.1% of the variance in Optimism). Because the error term of
the formative construct was freely estimated, the paths linking Chronic
Life Stress to Satisfaction with Life and Optimism are adjusted for mea-
surement error. The paths linking the X indicators to Chronic Life Stress
are interpreted as regression coefficients; for example, holding X2 and X3
constant, a one standardized unit increase in X1 is associated with a .425
standardized unit increase in Chronic Life Stress. Collectively, the three
formative indicators in this example have considerable strength in predict-
ing Chronic Life Stress (R2 = .939).
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TABLE 8.9. (cont.)

Residual Variances
Y1 1.321 0.186 7.082 1.321 0.212
Y2 1.661 0.142 11.735 1.661 0.378
Y3 3.181 0.284 11.214 3.181 0.354
Y4 3.964 0.528 7.509 3.964 0.236
Y5 5.971 0.506 11.795 5.971 0.393
Y6 6.510 0.622 10.459 6.510 0.337
SATIS 4.121 0.498 8.279 0.838 0.838
OPTIM 11.905 1.130 10.534 0.929 0.929
STRESS 0.488 3.435 0.142 0.061 0.061

R-SQUARE

Observed
Variable R-Square
Y1 0.788
Y2 0.622
Y3 0.646
Y4 0.764
Y5 0.607
Y6 0.663

Latent
Variable R-Square
SATIS 0.162
OPTIM 0.071
STRESS 0.939



SUMMARY

This chapter dealt with three specialized applications of CFA: higher-order
factor analysis, scale reliability evaluation, and models with formative indi-
cators. Each analysis provides a compelling method to address substan-
tively important research questions in a manner unparalleled by alterna-
tive approaches (e.g., CFA-based scale reliability vs. Cronbach’s alpha,
formative latent constructs vs. coarse composites). As with the other types
of models discussed throughout this book (e.g., MTMM models, Chapter
6), higher-order factor models and formative indicator models can be
embedded in broader SEM analyses (e.g., Figure 8.5), as determined by the
research context.

Now that the major types of CFA models have been presented, this
book turns to consider analytic issues relevant to any form of CFA. Chap-
ter 9 addresses the complications of missing, non-normal, and categorical
data. The final chapter describes methods for determining the appropriate
sample size of a CFA study.

NOTES

1. In earlier versions of LISREL, it was often necessary to provide starting
values when this form of specification was done. In my experience, this is not nec-
essary in later versions.

2. A related strategy is to impose equality constraints on the formative con-
struct and reflective construct error terms. Often, this approach is not conceptu-
ally well defended.
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9

Data Issues in CFA
Missing, Non-Normal,
and Categorical Data

This chapter presents several data issues frequently encountered in
CFA with applied data sets and ways to deal with them (e.g., missing
data, non-normality, parceling). In addition, procedures for conducting
CFA with categorical indicators are presented. In context of this discus-
sion, the parallels between CFA and item response theory are illus-
trated. The topics discussed in this chapter are equally germane to
broader applications of SEM.

CFA WITH MISSING DATA

Rarely will an applied researcher have the luxury of conducting a statistical
analysis (CFA or otherwise) using a data set in which all variables are pres-
ent for all cases. Indeed, missing data are the norm in research data sets.
However, applied research reports often fail to mention how missing data
were handled. In addition, the missing data strategies most often used by
researchers (e.g., listwise or pairwise deletion) are inappropriate and have
deleterious effects, such as loss of statistical power, and bias in parameter
estimates, standard errors, and test statistics (Allison, 2002, 2003; Little &
Rubin, 2002; Schafer & Graham, 2002).
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Mechanisms of Missing Data

Missing data may occur for a variety of reasons. For example, data may be
missing by design (“planned missingness”) as would occur in cohort-
sequential research designs (a longitudinal design frequently used in
developmental research), matrix sampling (used in educational testing
where all students are not administered identical item sets), or other
designs where participants in the sample are randomly selected to com-
plete various subsets of the full assessment battery (possibly due to practi-
cal considerations such as financial or time constraints). In addition, data
may be missing by chance for reasons other than the research design (e.g.,
accidental omission of a questionnaire in some assessment packets). In
such conditions, data are assumed to be missing completely at random
(MCAR). The assumption of MCAR holds if the probability of missing data
on Y is unrelated to Y or to the values of any other variable in the data set.
Using a two-variable (X = gender, Y = life satisfaction) illustration similar
to one presented by Allison (2003), the MCAR assumption would hold if
the probability of missing data on life satisfaction (Y) is not related to
either life satisfaction or gender (X). The condition of MCAR can be
readily tested in the research data; for example, do males and females differ
in the rate of missing data on life satisfaction? If the assumption holds for
all variables in the data set, the cases in the sample with complete data can
be considered as a random subsample of the total sample (as would occur
if missing data were planned as part of the research design).

The probability of missing data may be related to other variables in
the data set. The assumption of missing at random (MAR) is met when the
probability that data are missing on Y may depend on the value of X, but is
not related to the value of Y when holding X constant. Although a weaker
assumption, MAR is more likely than MCAR to hold in applied data sets
when missing data were not planned by research design. Again using the
two-variable example, MAR would hold if males and females differ in their
rates of missing data on life satisfaction, but within both levels of gender
(i.e., for males and females separately), the likelihood of missing data on
life satisfaction does not depend on the level of life satisfaction. It is
impossible to test the condition of MAR in research data because the val-
ues of missing data are unknown. As Allison (2003) notes, “In essence,
MAR allows missingness to depend on things that are observed, but not on
things that are not observed” (p. 545). This would be evident in a research
study that used a sampling procedure of planned missingness by selective
design (e.g., participants are selected for additional testing on the basis of
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initial testing scores). MAR is closely related (and sometimes used inter-
changeably) with the missing data mechanism referred to as ignorable (for
further discussion, see Allison, 2002, 2003).

Missing data are said to be nonignorable if the missingness is related to
values that would have been observed (i.e., the condition of MAR does not
hold). Missing data are nonignorable if cases with missing data on a given
variable would have higher or lower values on that variable than cases
with data present, controlling for all other variables in the data set. For
instance, using the example of a longitudinal research design (e.g., a treat-
ment outcome study where participants are assessed at pretreatment,
posttreatment, and various follow-up points), the data would be MAR if
dropouts were related to variables collected at testing occasions prior to
the dropout (Schafer & Graham, 2002). The data would be nonignorable
if dropouts are related to unseen responses on variables that would have
been collected after participants drop out (e.g., missing posttreatment data
from participants who failed to respond to treatment; treatment nonre-
sponse is unrelated to variables obtained at pretreatment).

Conventional Approaches to Missing Data

Over the past several years, sophisticated methods for handling missing
data have been developed when MCAR or MAR is true (e.g., direct maxi-
mum likelihood, multiple imputation; Allison, 1987; Little & Rubin, 2002;
Schafer, 1997; Schafer & Graham, 2002). Before discussing these state-of-
the-art methods, more common approaches to missing data management
are reviewed.

One such approach is listwise deletion, in which cases with missing
data on any variable used in the analysis are removed from the sample.
Listwise deletion has several advantages, including its ease of implementa-
tion, the fact that it can be used for any form of statistical analysis, and that
the same sample is used for all analyses. In fact, when data are MCAR,
listwise deletion will produce consistent (i.e., unbiased) parameter esti-
mates, standard errors, and test statistics (e.g., model χ2). As noted earlier,
when MCAR holds, the listwise complete sample can be regarded as a ran-
dom subsample of the original sample. However, estimates produced using
listwise deletion are usually not efficient. This is because listwise deletion
often results in loss of a considerable proportion of the original sample.
Thus, standard errors will frequently be larger when listwise deletion is
used, as compared with alternative methods (e.g., multiple imputation)
that use all of the available data. The inflation in standard errors will thus
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decrease statistical power and lower the precision of the parameter esti-
mates (wider confidence intervals). Indeed, Schafer and Graham (2002)
note that listwise deletion can be a very effective (and straightforward)
missing data strategy only when the MCAR assumption holds and only a
very small part of the sample is removed. When data are MAR, listwise
deletion may produce results that are neither consistent nor efficient.
Returning to the two-variable example, if males are more likely to have
missing data on the life satisfaction variable than females, and if males
report less life satisfaction than females, listwise deletion will result in a
positively biased estimate of average life satisfaction (although Allison,
2002, discusses scenarios where listwise deletion may outperform other
missing data methods when the assumptions of MAR are violated).

Another common missing data strategy is pairwise deletion. A variety
of statistical analyses (e.g., EFA, CFA, multiple regression, ANOVA) can be
performed using means, variances, and covariances as input data (i.e., do
not require raw data as input). When pairwise deletion is used, the input
vectors (means) and matrices (variances–covariances) are estimated using
all cases that have data present for each variable (means, variances) or
each pair of variables (covariances). For example, in a sample with 300
total participants who were administered variables X1, X2, and X3, the fre-
quencies with which data are present for the three pairs of indicators is:
X1,X2 = 226, X1,X3 = 56, and X2,X3 = 55. Using pairwise deletion, corre-
lations (or covariances) would be estimated for the input matrix using
three different Ns (226, 56, 55). This approach could be considered supe-
rior to listwise deletion because more data are preserved. When the data
are MCAR, pairwise deletion typically produces consistent parameter esti-
mates (fairly unbiased in large samples). Although one might expect that
pairwise deletion is more efficient than listwise deletion (because fewer
data are lost), this is not always the case (see Allison, 2002). Pairwise dele-
tion has a few other more serious problems. For one, pairwise deletion
produces biased standard errors. A related issue is the decision of what
sample size to specify when the input matrix is created under pairwise
deletion. In the example provided above, N might be specified as 300 (the
total sample), 226 (the highest number of cases that have data present on
two indicators), or 55 (the smallest number of cases that have data present
on two indicators). No single number is satisfactory: the largest N is too
liberal (negatively biased standard errors), but the smallest N is too con-
servative (inflated standard errors). Second, if the data are MAR, the
parameter estimates (as well as the standard errors) are often severely
biased. Finally, covariance matrices prepared using pairwise deletion may
not be positive definite, and thus the statistical model cannot be estimated
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(Wothke, 1993). Nonpositive definite matrices were discussed in Chapters
4 and 5. For instance, an input matrix will be nonpositive definite when
one or more of its elements have out-of-bounds values. The range of possi-
ble values that a correlation (or covariance) may possess is dependent on
all other relationships in the input matrix. To illustrate: for three variables,
X, Y, and Z, the correlation between X and Y (rx,y) must be within a certain
range, as determined by the following equation:

rx,zry,z ± SQRT[(1 – rx,z
2)(1 – ry,z

2)] (9.1)

For example, if rx,z = .70 and ry,z = .80, then the value of rx,y must be with
the range of .13 to .99 (i.e., .56 ± .43). If rx,y < .13, then the input matrix
would not be positive definite. Thus, out-of-range values may occur when
correlations (covariances) are estimated using pairwise deletion.

A less frequently used conventional method of missing data manage-
ment is simple (or single) imputation (mean and regression imputation).
For example, regression imputation (referred to by Allison, 2002, as “con-
ditional mean imputation”) entails regressing the variable with missing
data on other variables in the data set for cases with complete data. The
resulting regression equation is used to predict scores for cases with miss-
ing data. However, this approach frequently produces underestimates of
variances, overestimates of correlations, and underestimates of standard
errors. As discussed later in this chapter, the method of multiple imputation
reconciles these problems in part by introducing random variation into the
imputations and by repeating the imputation process several times.

Recommended Missing Data Strategies

More sophisticated methods for handling missing data have been devel-
oped in recent years. Maximum likelihood (direct ML) and multiple impu-
tation are the most widely preferred methods for handling missing data in
SEM and other data analytic contexts (Allison, 2003; Schafer & Graham,
2002). Both approaches use all the available data; that is, N = the total sam-
ple size, including cases with missing data. When either MCAR or MAR is
true (and the data have a multivariate normal distribution), maximum
likelihood and multiple imputation produce parameter estimates, standard
errors, and test statistics (e.g., model χ2) that are consistent and efficient.
These two approaches are now discussed.

The ML estimator can be readily used for the estimation of CFA and
SEM models with missing data. When ML is used in context of missing
data, it is often referred to as full information maximum likelihood, or FIML.

Data Issues in CFA 367



However, this term is not descriptive because ML is a full information esti-
mator regardless of whether the data set is (in)complete. Thus, some
methodologists (e.g., Allison, 2003) prefer the term direct ML or raw ML,
because ML estimation with missing data requires that raw data be input
to the analysis rather than a variance–covariance matrix (and means).

Before direct ML became widely available, some researchers relied on
the EM algorithm (Little & Rubin, 2002) for handling missing data in CFA/
SEM models (under the assumptions of MAR and multivariate normality).
The EM algorithm is a computational device for obtaining ML estimates of
the means and the covariance matrix (for details on its computation, see
Allison, 2002). These estimates (e.g., variance–covariance matrix) are then
used as the input matrix in the CFA/SEM analysis. An advantage of the EM
algorithm is that it can be easily implemented in a variety of popular statis-
tical software packages (e.g., SPSS, SAS, SYSTAT, PRELIS). However, a key
limitation of using the EM algorithm to calculate input matrices for CFA/
SEM is that the resulting standard errors of the parameter estimates are not
consistent. Thus, confidence intervals and significance tests may be com-
promised. As with pairwise deletion, this is due in part to the problem of
specifying the proper sample size (Allison, 2003).

Direct ML

Direct ML is free of the problems associated with using the EM algorithm
(Allison, 1987; Arbuckle, 1996; Muthén, Kaplan, & Hollis, 1987). Metho-
dologists generally regard direct ML to be the best method for handling
missing data in most CFA and SEM applications (e.g., Allison, 2003;
Duncan, Duncan, & Li, 1998). Direct ML is available in most current
latent variable software packages (e.g., Amos, Mplus, LISREL, Mx) and is
very straightforward to use. For example, in LISREL, direct ML is invoked
by the “MI” keyword on the Data (DA) line (in tandem with programming
LISREL to read a raw data file; e.g., RA=FILE.DAT); for example, MI = 9
would inform LISREL to treat the value of 9 in the raw data file as missing
data. Table 9.1 presents Mplus syntax for estimating a simple measure-
ment model of a questionnaire (single factor, four items, one error covari-
ance) with missing data. In this example, an actual research data file was
used (N = 650). Because the original data set was complete, a number of
cases were randomly selected to create missingness on each of the four
items (mostly item S4, as might occur if an item was illegible or acciden-
tally omitted on several questionnaires). Thus, in this illustration, it would
be reasonable to assume the data are MCAR.
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TABLE 9.1. Computer Syntax (Mplus) and Selected Output for Estimation of CFA
Model with Missing Data Using Direct Maximum Likelihood

TITLE:  CFA WITH MISSING ITEMS (DIRECT ML)
DATA:
FILE IS CFAMISS.DAT;

VARIABLE:
NAMES ARE SUBJ S1 S2 S3 S4;
USEV ARE S1 S2 S3 S4;
MISSING ARE ALL (9);

ANALYSIS: ESTIMATOR IS ML;
TYPE=MISSING H1;

MODEL:
ESTEEM BY S1 S2 S3 S4; S2 WITH S4;

OUTPUT:  STANDARDIZED MODINDICES(4.00) SAMPSTAT PATTERNS;

SUMMARY OF DATA
Number of patterns           5

SUMMARY OF MISSING DATA PATTERNS

MISSING DATA PATTERNS

1  2  3  4  5
S1        x  x  x  x
S2        x  x  x     x
S3        x  x     x  x
S4        x     x  x  x

MISSING DATA PATTERN FREQUENCIES

Pattern   Frequency     Pattern   Frequency     Pattern   Frequency
1         385           3          25           5          25
2         190           4          25

COVARIANCE COVERAGE OF DATA

Minimum covariance coverage value   0.100

PROPORTION OF DATA PRESENT

Covariance Coverage
S1            S2            S3            S4
________      ________      ________      ________

S1             0.962
S2             0.923         0.962
S3             0.923         0.923         0.962
S4             0.669         0.669         0.669         0.708



Only a couple additions are needed to Mplus syntax for a typical CFA
model. First, the statement “MISSING ARE ALL (9)” informs Mplus
that, for all variables, “9” indicates a missing value. Second, under the
ANALYSIS command, the statement “TYPE = MISSING” informs Mplus to
conduct direct ML. The H1 option allows the estimation of an unrestricted
mean and covariance model under direct ML. On the OUTPUT line, the
PATTERNS option is requested to obtain a summary of missing data pat-
terns. Otherwise, the programming and output of CFA results (e.g., fit sta-
tistics, parameter estimates, standard errors) are the same as those of a
CFA analysis without missing data.

Table 9.1 presents output of the analysis produced by the PATTERNS
option. It is important to examine the missing data patterns in order to
determine how well the model can be estimated. The results show that
there are five missing data patterns (“x” = data are present, a blank = data
are missing). In the first pattern, data are present for all four items (n =
385). When data are missing, the second pattern is most common—that is,
all items except S4 are present (n = 190). In the remaining three patterns
(ns = 25), a single item other than S4 is missing. The next section of the
output presents the covariance coverage in the data. Covariance coverage
indicates the proportion of data that were available for each indicator and
pair of indicators. For example, as only 25 cases were missing item S1
(missing data pattern 5), coverage of this item is .962 (625/650 = .962).
Sixty-seven percent (.669) of the sample had data present for both S1 and
S4. Muthén and Muthén (1998–2004) note that coverage of about 50%
usually causes no problems with direct ML estimation (and H1) in Mplus.
By default, Mplus stops the analysis if coverage is less than 10% for any
covariance (although this default can be overridden by an option on the
ANALYSIS command; e.g., COVERAGE = .05).

Direct ML assumes that the data are MCAR or MAR and multivariate
normal. However, when data are non-normal, direct ML can be imple-
mented to provide standard errors and test statistics that are robust to non-
normality using the MLR estimator (robust ML; Yuan & Bentler, 2000).
This feature has been added to recent releases of many programs such as
Mplus and EQS.

Multiple Imputation

In most cases, direct ML represents the best and easiest way to manage
missing data in CFA and SEM analyses. However, the procedure of multiple
imputation (Rubin, 1987) is a valuable alternative to direct ML. Multiple
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imputation possesses statistical properties that closely approximate ML
(Allison, 2002, 2003; Schafer, 1997). As Allison (2003) notes, multiple
imputation is a useful approach to missing data when the researcher does
not have access to a program capable of direct ML or wishes to estimate a
CFA/SEM model with a fitting function other than ML.

As discussed earlier, simple imputation procedures such as mean or
regression imputation are problematic because they produce underesti-
mates of variances and overestimates of correlations among the variables
with imputed data. For instance, if regression imputation was used to sup-
ply values on variable Y from data that are available on variable X (i.e.,
�Y = a + bX), the correlation between X and Y would be overestimated (i.e.,
for cases with imputed Y values, X is perfectly correlated with Y). Multiple
imputation reconciles this problem by introducing random variation into
the process. In other words, missing values for each case are imputed on
the basis of observed values (as in regression imputation), but random
noise is incorporated to preserve the proper degree of variability in the
imputed data. In the bivariate example, inclusion of this random variation
is reflected by the equation

�Y = a + bX + Sx,yE (9.2)

where Sx,y is the estimated standard deviation of the regression’s error term
(root mean squared error), and E is a random draw (with replacement)
from a standard normal distribution. However, if this procedure is con-
ducted a single time, the resulting standard errors would be too small
because the standard error calculation would not account adequately for
the additional variability in the imputed data. This problem is solved by
repeating the imputation process multiple times. Because random varia-
tion is included in the process, the resulting data sets will vary slightly. The
variability across imputed data sets is used to upwardly adjust the standard
errors.1

Thus, there are three basic steps of multiple imputation. The first step
is to impute multiple data sets. When the amount of missing data is no
more than moderate, generating five imputed data sets (M = 5) is usually
sufficient (Allison, 2003) and is the default in some software packages
(e.g., SAS PROC MI; Yuan, 2000).2 In the second step, the M data sets are
analyzed using standard analytic procedures (i.e., CFA, ANOVA, etc.). In
the third step, the results from the M analyses are combined into a single
set of parameter estimates, standard errors, and test statistics. Parameter
estimates are combined by simply averaging the estimates across the M
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analyses. Standard errors are combined using the average of the standard
errors over the set of analyses and the between-analysis parameter estimate
variation (Schafer, 1997); for the exact formula of this calculation, see
either Allison (2003) or Rubin (1987).

A few programs for multiple imputation are now available. The first
widely used program for multiple imputation, NORM (a free, download-
able program for Windows) was developed by Schafer (1997). Using the
algorithms contained in NORM, SAS has introduced a relatively new pro-
cedure (PROC MI; Yuan, 2000) for multiple imputation. MI procedures are
also available in recent releases of LISREL (e.g., version 8.72). Recent
releases of Mplus (e.g., version 3.1) have the capability of combining
parameter estimates, standard errors, and test statistics of CFA/SEM analy-
ses conducted on data sets that were created by multiple imputation in
another software program.

Table 9.2 presents the SAS syntax for estimating a CFA model with
missing data using multiple imputation. The same data set used in Table
9.1 (direct ML using Mplus) is used in this example. The syntax listed in
Step 1 generates multiple imputations using SAS PROC MI for this exam-
ple. The PROC MI syntax is very straightforward. The names of the input
and output data files are specified, along with the list of variables to be
used in the imputation process. A couple of PROC MI options are also
illustrated in the syntax. The NIMPU option specifies the number of impu-
tations to be conducted (in this example, the number of imputations speci-
fied is redundant with the SAS default). The SEED option specifies a posi-
tive integer that is used to start the pseudorandom number generator (the
SAS default is a value generated from reading the time of day from the
computer’s clock). In this example, a seed value is specified so that the
results can be duplicated in separate computer runs. This option touches
on a minor drawback in multiple imputation: because random variation is
introduced, multiple imputation will yield slightly different results each
time it is conducted.3 There are a variety of other options available in
PROC MI, including options to make the imputed values consistent with
the observed variable values (i.e., set minimum and maximum values,
round imputed values to desired units) and to specify the method of impu-
tation (the SAS default is Markov Chain Monte Carlo, MCMC, which in
essence is a method of improving the estimates of imputed data in the con-
text of complex missing data patterns by using the imputed data to pro-
duce optimal estimates of the regression coefficients). See Yuan (2000) and
Allison (2003) for a discussion of other options and complications with
multiple imputation.
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TABLE 9.2. Computer Syntax (SAS) and Selected Output for Estimation of CFA
Model with Missing Data Using Multiple Imputation

Step 1: Creation of Data Sets with Imputed Data

proc mi data=sedata nimpu=5 seed=44176 out=seimp;
var s1 s2 s3 s4;

run;

Step 2: CFA of Data Sets Created by Multiple Imputation

libname sys ‘c:\missing\’;
data esteem;
set sys.seimp;

proc calis data=esteem method=ml cov privec pcoves;
var = s1-s4;
lineqs
s1 = 1.0 f1 + e1,
s2 = lam2 f1 + e2,
s3 = lam3 f1 + e3,
s4 = lam4 f1 + e4;

std
f1 = ph1,
e1-e4 = th1 th2 th3 th4;

cov
e2 e4 = th5;

by _imputation_;
ods output Estimates=a covmat=b;
run;

Step 3: Combining Parameter Estimates and Standard Errors

proc mianalyze parms=a covb=b;
var lam2 lam3 lam4 ph1 th1 th2 th3 th4 th5;
run;

Selected Output

Multiple Imputation Parameter Estimates

Parameter Estimate Std Error 95% Confidence Limits DF

lam2 1.375094 0.062479 1.252596 1.497593 3486.7
lam3 1.354973 0.057990 1.241247 1.468698 2076
lam4 1.265969 0.061006 1.145971 1.385966 339.46
ph1 0.834902 0.078748 0.680498 0.989305 3095.1
th1 0.690190 0.044470 0.602668 0.777712 292.53
th2 0.288787 0.044836 0.200662 0.376912 429.23
th3 0.451633 0.041280 0.370563 0.532703 602.7
th4 0.298328 0.050084 0.195041 0.401615 24.359
th5 0.254208 0.043327 0.164350 0.344070 21.985

(cont.)



At a minimum, all variables that are to be used in the substantive anal-
ysis (e.g., CFA) should be included in the multiple imputation process.
Although not shown in the Table 9.2 example, multiple imputation is
often fostered by making use of additional variables that are not used in
the substantive analysis. This is also true for direct ML. Such “extra” vari-
ables would entail variables that are correlated with the variables of inter-
est that have missing data, and variables that are associated with the proba-
bility of missingness for the variables of interest. In SAS PROC MI, these
extra variables would simply be added to the variable list.

In the second step of Table 9.2, SAS PROC CALIS is used to conduct
a CFA for each of the five completed data sets produced by PROC MI.
PROC MI writes the five data sets to a single file, adding the variable
_IMPUTATION_ (with range of values = 1–5) to distinguish each data set.
As can be seen in Table 9.2, the CALIS syntax looks typical except for the
final two lines. The “by _imputation_” line requests a separate CFA for
each value of the variable, _IMPUTATION_ (i.e., five separate CFAs). The
final line (ods = output delivery system) informs SAS to write the parame-
ter estimates (“Estimates”) and covariance matrix (“covmat”) to SAS data
sets (named “a” and “b”) for further analysis.

The third step of Table 9.2 demonstrates the use of SAS PROC
MIANALYZE, a SAS procedure that combines the results of the multiple
analyses and generates valid statistical inferences about each parameter.
The keyword “PARMS” is used to indicate a SAS data set that contains
parameter estimates from imputed data sets; the keyword “COVB” names a
SAS data set that contains covariance matrices of the parameter estimates
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TABLE 9.2. (cont.)

Multiple Imputation Parameter Estimates

Parameter Minimum Maximum
t for H0:

Parameter=Theta0 Pr > |t|

lam2 1.364608 1.387795 22.01 <.0001
lam3 1.345343 1.371108 23.37 <.0001
lam4 1.246292 1.288201 20.75 <.0001
ph1 0.814763 0.852187 10.60 <.0001
th1 0.679365 0.712501 15.52 <.0001
th2 0.266607 0.298306 6.44 <.0001
th3 0.435737 0.463256 10.94 <.0001
th4 0.256843 0.330129 5.96 <.0001
th5 0.233794 0.298554 5.87 <.0001



from imputed data sets (if the COVB option is used, so must PARMS, and
vice versa). The variable (VAR) statement is required to list the names of
the parameters to be combined (in this example, the freely estimated factor
loadings, factor variance, measurement error variances, and error covari-
ance).

In addition, Table 9.2 presents selected output generated by PROC
MIANALYZE. Included in this output are the averaged unstandardized
parameter estimates, their standard errors, their 95% confidence intervals,
range of values across imputations, and test statistics (see “t for H0:” col-
umn; that is, parameter estimate divided by its standard error) and associ-
ated p values. These results would be interpreted in the same fashion as a
standard CFA of a single, complete data set (e.g., unstandardized factor
loading of S2 = 1.375, SE = .0625, z = 22.01, p < .001). Through simple
manipulations (e.g., see Chapter 4), a completely standardized solution
could be readily calculated.

Table 9.3 presents Mplus syntax for analyzing and combining the
results of data sets generated by multiple imputation.4 In Mplus, the multi-
ple imputations must be produced by another program (e.g., SAS PROC
MI, NORM). In this example, the five data sets created by PROC MI (see
Table 9.2) were exported to a text file. The text file was then split into five
files corresponding to the five separate data sets generated by PROC MI
(named data1.dat, data2.dat . . . data5.dat). In Mplus, the FILE option of
the DATA command is used to provide the name of the file that contains
the names of the multiple imputation data sets to be analyzed. In this case,
the file is named “IMPUTE.DAT.” IMPUTE.DAT is a text file created by the
user that contains the names of the multiple imputation data sets (e.g.,
data1.dat, data2.dat . . . data5.dat; each file name is on a separate line).
Specifying “TYPE=IMPUTATION” on the DATA command instructs Mplus
to run an analysis for each data set named in IMPUTE.DAT. The results of
the analyses are then combined using the same methods used by PROC
MIANALYZE (although Mplus also provides averaged fit statistics such as
model χ2, RMSEA, CFI, etc.; Table 9.3 presents the average model χ2). As
can be seen in Table 9.3, the combined Mplus results are roughly the same
(within rounding error) as the combined results produced by PROC
MIANALYZE (cf. Table 9.2).

Table 9.4 presents the unstandardized parameter estimates, standard
errors, and model χ2 generated by the various methods of handling miss-
ing data discussed in this chapter. Recall that a problem with pairwise
deletion is determining the appropriate sample size to specify in the analy-
sis. For this illustration, two Ns were used: (1) the number of nonmissing
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TABLE 9.3. Computer Syntax (Mplus) and Selected Output for Combining CFA
Results from Multiple Imputation Data Sets

TITLE:  CFA WITH MISSING ITEMS (MULTIPLE IMPUTATION)
DATA:
FILE IS “C:\IMPUTE.DAT”;
TYPE = IMPUTATION;

VARIABLE:
NAMES ARE IMP SUBJ S1 S2 S3 S4;
USEV ARE S1 S2 S3 S4;

ANALYSIS: ESTIMATOR IS ML;
MODEL:

ESTEEM BY S1 S2 S3 S4; S2 WITH S4;

TESTS OF MODEL FIT

Number of Free Parameters                        9

Chi-Square Test of Model Fit

Degrees of freedom                       1

Mean                                 2.057
Std Dev                              1.232
Number of successful computations        5

MODEL RESULTS

Estimates     S.E.  Est./S.E.
ESTEEM   BY

S1                 1.000    0.000      0.000
S2                 1.375    0.062     22.087
S3                 1.355    0.058     23.467
S4                 1.266    0.060     20.956

S2       WITH
S4                 0.254    0.042      6.090

Variances
ESTEEM             0.834    0.078     10.641

Residual Variances
S1                 0.689    0.044     15.685
S2                 0.288    0.044      6.498
S3                 0.451    0.041     11.023
S4                 0.298    0.048      6.171
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cases for the variable with the most missing data (N = 460); and (2) the
size of the full sample (N = 650; cf. Allison, 2003). In this example, the
results produced by the various missing data methods are similar. This can
be attributed in large part to the size of the sample (elimination of 41% of
the sample with at least one missing observation still results in an N = 385)
and the fact that the data are MCAR. The biggest difference is seen in the
standard errors produced in the analysis using listwise deletion. Spe-
cifically, these standard errors are somewhat larger than those produced by
the other methods, which use more of the available data. Note the similar-
ity of the parameter estimates and standard errors produced by direct ML
and multiple imputation. If one were to round to the second decimal
point, virtually all of these values would be the same.

In summary, direct ML and multiple imputation are strong methodol-
ogies for handling missing data when the data are either MCAR or MAR. If
missing data are nonignorable (i.e., the MAR assumption does not hold),
these procedures will yield misleading results (unfortunately, although
there are often reasons to believe that data are not MAR, there is no way to
test this assumption). Methodologists have developed procedures of esti-
mation with nonignorable missing data (e.g., pattern-mixture models).
However, such procedures require firm knowledge of the missing data
mechanism. In addition, such models are prone to underidentification and
are very difficult to estimate properly (Allison, 2002, 2003; Little & Rubin,
2002). Allison (2002, 2003) urges that methods for nonignorable missing
data should be interpreted with great caution and should be accompanied
by sensitivity analyses to explore the effects of different modeling assump-
tions (e.g., mechanisms of missingness).

CFA WITH NON-NORMAL OR CATEGORICAL DATA

In previous examples in this book, the maximum likelihood (ML) estima-
tor was used. The vast majority of CFA and SEM models reported in the
applied research literature use ML. However, an alternative to ML for
normal, continuous data is generalized least squares (GLS). GLS is a
computationally simpler fitting function and produces approximately the
same goodness of fit as ML (i.e., FML = FGLS), especially when sample size is
large. Nevertheless, ML (and GLS) are appropriate only for multivariate
normal, interval-type data (i.e., the joint distribution of the continuous
variables is distributed normally). When continuous data depart markedly
from normality (i.e., marked skewness or kurtosis), or when some of the
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indicators are not interval level (i.e., binary, polytomous, ordinal), an esti-
mator other than ML should be used.5 In this section, alternatives to ML
are discussed for such situations.

Non-Normal, Continuous Data

Research has shown that ML (and GLS) is robust to minor departures in nor-
mality (e.g., Chou & Bentler, 1995). However, when non-normality is more
pronounced, an estimator other than ML should be used to obtain reliable
statistical results (i.e., accurate goodness-of-fit statistics and standard errors
of parameter estimates). ML is particularly sensitive to excessive kurtosis.
The consequences of using ML under conditions of severe non-normality
include (1) spuriously inflated model χ2 values (i.e., overrejection of solu-
tions); (2) modest underestimation of fit indices such as the TLI and CFI;
and (3) moderate to severe underestimation of the standard errors of the
parameter estimates (inflating the risk of Type I error—i.e., concluding that a
parameter is significantly different from zero when that is not the case in the
population) (West, Finch, & Curran, 1995). These deleterious effects are
exacerbated as sample size decreases (i.e., the risk for nonconverging or
improper solutions increases). The two most commonly used estimators for
non-normal continuous data are (1) robust ML (Bentler, 1995; Satorra &
Bentler, 1994); and (2) weighted least squares (WLS; Browne, 1984b). For
reasons discussed in the next section (e.g., requirement of extremely large
samples), WLS is not recommended. In contrast, research has shown that
robust ML is a very well-behaved estimator across different levels of non-
normality (except in instances of severe floor or ceiling effects), model com-
plexity, and sample size (e.g., Chou & Bentler, 1995; Curran et al., 1996).

The robust ML estimator (hereafter abbreviated, MLM) provides ML
parameter estimates with standard errors and a mean-adjusted χ2 test sta-
tistic that are robust to non-normality. The mean-adjusted χ2 test statistic
is often referred to as the Satorra–Bentler scaled χ2 (SB χ2; Satorra &
Bentler, 1994). Although MLM was first introduced in the EQS program, it
is now available in some other latent variable software packages (e.g.,
Mplus, LISREL). To use MLM in EQS or Mplus, raw data must be inputted.
In LISREL, its preprocessor companion, PRELIS, must be used to generate
a covariance matrix and asymptotic covariance matrix for use as input in
the subsequent CFA analysis. The asymptotic covariance matrix is used to
compute a weight matrix (W, to adjust fit statistics and standard errors for
non-normality) in subsequent LISREL analyses that rely on a non-normal
theory estimator such as MLM (Jöreskog & Sörbom, 1996b).
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Table 9.5 presents Mplus, EQS, and PRELIS/LISREL syntax for con-
ducting a simple CFA model (one factor, five indicators, N = 870) using
the MLM estimator. The table shows how raw data can be read into Mplus
and EQS (see DATA and /SPECIFICATIONS lines, respectively). The MLM
is requested in Mplus and EQS by the “ESTIMATOR IS MLM” and
“METHODS=ML, ROBUST” syntax, respectively. Otherwise, the syntax is
like that of a typical CFA analysis. In this first example, a congeneric
model is specified (one factor, no correlated measurement errors). A later
example entails a respecified CFA model of this data set (i.e., correlated
error of X1 and X3) to illustrate nested χ2 evaluation when the MLM esti-
mator is employed.

The LISREL preprocessing program, PRELIS, serves a variety of func-
tions, including tests of normality, multiple imputation, bootstrapping,
Monte Carlo studies, and generating various types of matrices (e.g., covar-
iance, tetrachoric correlations, polychoric correlations) from raw text-file
data or data imported from other software programs such as SPSS. In this
example, PRELIS is used to test for normality and create matrices to be
used as input for LISREL (e.g., covariance and asymptotic covariance
matrices). The line CO ALL is included to declare all five indicators as
continuous. PRELIS regards any variable with less than 16 distinct values
as ordinal by default. Thus, this command is necessary in instances where
indicators with a sample range of 15 or less are desired to be treated as
interval level. Syntax on the PRELIS output line (OU) saves the covariance
and asymptotic covariance matrices to external files (in addition, a file
containing indicator means is also saved). The LISREL programming is the
same as for a typical CFA except that the covariance matrix (CM) and
asymptotic covariance matrix (AC) are used as input for the analysis. Note
that ML is still requested as the estimator on the output (OU) line (i.e.,
ME=ML). However, because an asymptotic covariance matrix has been
inputted, LISREL will provide the SB χ2 (along with the usual model χ2)
and standard errors that are robust to non-normality.

Table 9.6 provides selected results from EQS and PRELIS with regard
to the univariate normality of the five indicators (normality tests are auto-
matically produced by EQS when MLM is requested). As shown in this
table, EQS and PRELIS produce very similar results. Some of the indicators
evidence considerable non-normality (e.g., kurtosis of X5 = 9.4), and thus
the assumption of multivariate normality does not hold (although uni-
variate normality does not ensure multivariate normality, univariate non-
normality does ensure multivariate non-normality).
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TABLE 9.5. Mplus, EQS, and LISREL/PRELIS Syntax for Conducting CFA
with Non-Normal, Continuous Data Using Robust Maximum Likelihood

Mplus

TITLE:  CFA WITH NON-NORMAL, CONTINUOUS DATA (ROBUST ML)
DATA:

FILE IS NONML.DAT;
VARIABLE:

NAMES ARE x1 x2 x3 x4 x5;
ANALYSIS: ESTIMATOR IS MLM;
MODEL:

F1 BY x1 x2 x3 x4 x5;
!without x1, x3 correlated residual (ADDED IN 2ND RUN);

OUTPUT:  STANDARDIZED MODINDICES(10.00) SAMPSTAT;

EQS

/TITLE
one-factor measurement model: non-normal, continuous data

/SPECIFICATIONS
CASES=870; VARIABLES=5; METHODS=ML, ROBUST; MATRIX=RAW; ANALYSIS=COV;
DATA = ‘NONML.DAT’; FO = ‘(5F2.0)’;

/LABELS
v1=item1; v2= item2; v3= item3; v4= item4; v5= item5;
f1 = factor1;

/EQUATIONS
V1 =  F1+E1;
V2 = *F1+E2;
V3 = *F1+E3;
V4 = *F1+E4;
V5 = *F1+E5;

/VARIANCES
F1 = *;
E1 TO E5= *;
!/COVARIANCES           ! ADDED IN SECOND RUN
! E1, E3 = *;

/PRINT
fit=all;

/LMTEST
/END

LISREL/PRELIS

PRELIS PROGRAM: CFA WITH NON-NORMAL CONTINUOUS DATA
DA NI=5 NO=870
RA FI=NONML.DAT
CO ALL
LA
X1 X2 X3 X4 X5
OU MA=CM ME=NNML.ME CM=NNML.CM AC=NNML.ACC

(cont.)



When MLM is requested, EQS will output both the ML χ2 and SB χ2,
as well as both the ML standard errors and robust standard errors of the
unstandardized parameter estimates (although LISREL will also provide
the ML χ2, Mplus and LISREL provide only robust standard errors when
MLM is requested). In Table 9.7, χ2 values and the unstandardized factor
loadings (and their standard errors) are presented from EQS output. These
results demonstrate the typical consequences of using ML in the context of
non-normal data. Specifically, the ML χ2 (87.48) is considerably larger
than the SB χ2 (33.13), reflecting the tendency for ML to produce inflated
χ2 values when data are non-normal. In addition, the standard errors of the
ML estimates are noticeably smaller than those based on MLM (e.g., .027
vs. .051 for the V2 indicator), illustrating the propensity for ML to under-
estimate standard errors in this context. The underestimation of standard
errors results in inflated test statistics (e.g., zs for V2 = 22.60 and 12.15 for
ML and MLM, respectively), thus increasing the risk of Type I error. Note
that the parameter estimates are not affected (e.g., λ21 = .618) by the type
of estimator used (e.g., λ21 = .618 in both ML and MLM). Although not
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TABLE 9.5. (cont.)

TITLE LISREL CFA WITH NON-NORMAL, CONTINUOUS DATA
DA NI=5 NO=870 MA=CM
CM=NNML.CM
AC=NNML.ACC
ME=NNML.ME    ! NOT NEEDED UNLESS CONDUCTING MEANSTRUCTURE ANALYSIS
LA
X1 X2 X3 X4 X5
MO NX=5 NK=1 PH=SY,FR LX=FU,FR TD=SY,FR
LK
FACTOR1
PA LX
0
1
1
1
1
VA 1.0 LX(1,1)
PA TD
1
0 1
0 0 1        ! X1, X3 CORRELATED ERROR ADDED ON SECOND RUN, TD(3,1)
0 0 0 1
0 0 0 0 1
OU ME=ML RS MI SC AD=OFF IT=100 ND=4
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TABLE 9.7. Selected EQS Results of CFA with Robust Maximum Likelihood Estimation

GOODNESS OF FIT SUMMARY
INDEPENDENCE MODEL CHI-SQUARE =      2523.941 ON   10 DEGREES OF FREEDOM

CHI-SQUARE =       87.478 BASED ON     5 DEGREES OF FREEDOM
PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS LESS THAN 0.001

THE NORMAL THEORY RLS CHI-SQUARE FOR THIS ML SOLUTION IS         90.680.

SATORRA-BENTLER SCALED CHI-SQUARE =     33.1281
PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS     0.00000

MEASUREMENT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS
(ROBUST STATISTICS IN PARENTHESES)

ITEM1   =V1  =   1.000 F1    + 1.000 E1

ITEM2   =V2  =    .703*F1    + 1.000 E2
.035

20.121
(   .062)
( 11.339)

ITEM3   =V3  =   1.068*F1    + 1.000 E3
.034

31.712
(   .044)
( 24.119)

ITEM4   =V4  =    .918*F1    + 1.000 E4
.042

21.762
(   .063)
( 14.613)

ITEM5   =V5  =    .748*F1    + 1.000 E5
.033

22.404
(   .055)
( 13.588)

Note. Unstandardized parameter estimates are derived from a revised solution that adds the param-
eter of an error covariance between items 1 and 3 (see Table 9.5).



shown in Table 9.7, the values of other commonly used fit indices (e.g.,
TFI, CFI, RMSEA, SRMR) also differ to varying degrees (e.g., RMSEA =
0.138 and .082 in ML and MLM, respectively).

Chi-square difference testing can be conducted using the SB χ2 statis-
tic. However, unlike ML-based analysis, this test cannot be conducted by
simply calculating the difference in χ2 values produced by the nested and
comparison models. This is a common mistake in the applied research lit-
erature. The reason is that a difference between two SB χ2 values for nested
models is not distributed as χ2. Thus, a scaled difference in 2s (SDCS) test
should be used (Satorra & Bentler, 1994). The SDCS test statistic, TS, is
computed as

TS = (T0 – T1) / cd (9.3)

where T0 is the regular ML χ2 for the nested model, T1 is the regular ML χ2

for the comparison (less restricted) model, and cd is the difference test
scaling correction. cd is defined as

cd = [(d0 * c0) – (d1 * c1)] / (d0 – d1) (9.4)

where d0 is the degrees of freedom of the nested model, d1 is the degrees of
freedom of the comparison model, c0 is the scaling correction factor for the
nested model, and c1 is the scaling correction factor for the comparison
model. In Mplus, scaling correction factors are automatically provided
when the MLM estimator is used. If a program other than Mplus is being
used, scaling correction factors can be readily computed by dividing the
regular ML χ2 by the SB χ2:

c0 = T0 / T0* (9.5)

where T0* is the SB χ2 value.
The process of computing the SCDS test statistic (TS) is illustrated

using the previous one-factor CFA model. After fitting the initial CFA
model, the results indicate that the fit of the solution could be improved by
specifying a correlated error between indicators X1 and X3. Because this
modification can be defended on substantive grounds, a revised solution is
pursued. Table 9.8 breaks down the process of computing TS into three
steps. First, the χ2s must be obtained from ML and MLM for the nested
and comparison models (the initial CFA model is nested within the CFA

Data Issues in CFA 385



model with a correlated error with a single degree of freedom; d0 – d1 = 5 –
4 = 1). These four χ2 values are then used to calculate the scaling correc-
tion factors for the nested and comparison models; for example, c0 = T0 /
T0* = 87.478 / 33.128 = 2.641 (see Table 9.8). In the second step, the dif-
ference test scaling correction (cd) is computed using the scaling correc-
tion factors and degrees of freedom from the nested and comparison mod-
els. As shown in Table 9.8, cd in this example equals 3.013. In the third and
final step, TS is obtained by dividing the difference between the ML χ2 val-
ues of the nested and comparison models by cd; that is, TS = (87.478 –
25.833) / 3.013 = 20.46. TS is interpreted in the same fashion as the regular
χ2 difference test. Because the TS value is statistically significant (df = 1,
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TABLE 9.8. Computing the Scaled Difference in Chi-Squares (SDCS) Test
for Nested Models Estimated with Robust Maximum Likelihood (MLM)

Step 1. Obtain T0 and T1 Values and Scaling Correction Factors for Nested
and Comparison Models

Nested Model (One-Factor, No Correlated Measurement Errors)

T0 T0* d0 c0

ML 87.478 5
MLM 33.128 5 2.641*

*c0 = T0 / T0* = 87.478 / 33.128 = 2.641

Comparison Model (One-Factor, One Correlated Measurement Error)

T1 T1* d1 c1

ML 25.833 4
MLM 10.137 4 2.502*

*c1 = T1 / T1* = 25.833 / 10.137 = 2.548

Step 2. Compute the Difference Test Scaling Correction (cd)
cd = [(d0 ∗ c0) – (d1 * c1)] / (d0 – d1)

cd = [(5 ∗ 2.641) – (4 * 2.548)] / (5 – 4) = 3.013

Step 3. Compute the Satorra–Bentler SDCS Test
TS = (T0 – T1) / cd

TS = (87.478 – 25.833) / 3.013 = 20.46

TS = 20.46, df = 1, p < .001

Note. T0 = ML χ2 for nested model; T0* = Satorra–Bentler scaled χ2 for nested model; T1 =
ML χ2 for comparison model; T1* = Satorra–Bentler scaled χ2 for comparison model; d0 =
degrees of freedom of nested model; d1 = degrees of freedom of comparison model; c0 = scal-
ing correction factor for nested model; and c1 = scaling correction factor for comparison
model.



p < .001), it can be concluded that the revised one-factor model provides a
significantly better fit to the data than the original one-factor solution. In
this example, the traditional χ2 difference test would have yielded the
same conclusion (i.e., T0 – T1 = 87.478 – 25.833 = 61.645, p < .001),
although the differential magnitude of the χ2 differences is appreciable
(20.46 vs. 61.645). However, there are many situations where using the
standard χ2 difference test to compare nested models estimated by MLM
will yield misleading results (i.e., provide false evidence of the statistical
equivalence or difference between the fit of the nested and comparison
model solutions). Thus, the SCDS test should always be employed when
comparing nested solutions estimated by MLM.

Categorical Data

When at least one factor indicator is categorical (i.e., dichotomous,
polytomous, ordinal), ordinary ML should not be used to estimate CFA
models. The potential consequences of treating categorical variables as
continuous variables in CFA are multifold, including that it can (1) pro-
duce attenuated estimates of the relationships (correlations) among indi-
cators, especially when there are floor or ceiling effects; (2) lead to
“pseudofactors” that are artifacts of item difficulty or extremeness; and (3)
produce incorrect test statistics and standard errors. ML can also produce
incorrect parameter estimates, such as in cases where marked floor or ceil-
ing effects exist in purportedly interval-level measurement scales (i.e.,
because the assumption of linear relationships does not hold). Thus, it is
important that an estimator other than ML be used with categorical out-
comes or severely non-normal data.6

There are a handful of estimators that can be used with categorical
indicators; for example, weighted least squares (WLS), robust weighted
least squares (WLSMV), and unweighted least squares (ULS). Historically,
WLS (Browne, 1984b) has been the most frequently used estimator for cat-
egorical outcomes (despite the fact that it was originally intended for use
with non-normal, continuous data). WLS is available in all of the major
latent variable software programs (in Amos, WLS is referred to as asymp-
totically distribution-free, ADF; in EQS, WLS is referred to as arbitrary
generalized least squares, AGLS). WLS is closely related to the GLS estima-
tor. Like ML, GLS minimizes the discrepancy between the observed (S)
and predicted (Σ) covariance matrices. However, GLS uses a weight matrix
(W) for the residuals. In GLS, W is typically the inverse of S. WLS uses a
different W; specifically, one that is based on estimates of the variances and
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covariances of each element of S, and fourth-order moments based on
multivariate kurtosis (Jöreskog & Sörbom, 1996b; Kaplan, 2000). Thus,
unlike GLS, the WLS fit function is weighted by variances/covariances and
kurtosis to adjust for violations in multivariate normality; that is, if there is
no kurtosis, WLS and GLS will produce the same minimum fit function
value, FWLS = FGLS.

Because W in WLS is based on the variances and covariances of each
element of S (in other words, the “covariances of the covariances”), it can
be extremely large, especially when there are many indicators in the
model. Consider a three-factor CFA model in which each latent factor is
defined by 6 indicators (p = 18). Thus, there are 171 elements of S; that is,
b = 18(19) / 2 (see Eq. 3.14, Chapter 3). In this example, W is of the order
b × b (171 × 171) and has 14,706 distinct elements; b(b + 1) / 2 = 171(172)
/ 2 = 14,706. The need to store and invert such large matrices in the itera-
tive model-estimation process may pose serious difficulties in practical
applications (e.g., quite demanding of computer resources). Moreover,
WLS requires very large samples in order to accurately estimate the matrix
of fourth-order moments (Jöreskog & Sörbom, 1996b). In addition, WLS
requires that sample size exceeds b + p (number of elements of S plus
number of indicators) to ensure that W is nonsingular (EQS will not per-
form WLS if N < b). Unless the sample size is quite large, very skewed
items can make W not invertible; W will frequently be nonpositive definite
in small to moderate samples with variables that evidence floor or ceiling
effects. Consequently, WLS behaves very poorly in small or moderately
sized samples. Moreover, in Monte Carlo studies that evaluated the perfor-
mance of various estimators of non-normally distributed continuous data,
results have suggested that WLS does not perform as well as MLM (e.g.,
Chou & Bentler, 1995). Evidence also suggests that the performance of the
WLS estimator with categorical outcomes is not favorable (e.g., over-
sensitivity of χ2 and considerable negative bias in standard errors as model
complexity increases; Muthén & Kaplan, 1992). Thus, as with non-normal
continuous data, WLS is not a good estimator choice with categorical out-
comes, especially in small to moderate samples (Flora & Curran, 2004).

Currently, the Mplus program appears to provide the best options for
CFA modeling with categorical data. This is due in part to the WLSMV
estimator, which is currently available only in Mplus. The WLSMV estima-
tor provides weighted least square parameter estimates using a diagonal
weight matrix (W) and robust standard errors and a mean- and variance-
adjusted χ2 test statistic (Muthén & Muthén, 1998-2004). Unlike WLS,
WLSMV does not require W to be positive definite, because W is not
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inverted as part of the estimation procedure. In WLSMV, the number of
elements in the diagonal W equals the number of sample correlations in S,
but this matrix is not inverted during estimation. Nevertheless, WLSMV
estimation is fostered by N being larger than the number of rows in W. In
the computation of the χ2 test statistic and standard errors, the full W is
used but not inverted. Thus, although CFA models using categorical indi-
cators necessitate larger samples than comparably sized models using con-
tinuous indicators, the sample size requirements of WLSMV are far less
restrictive than those of WLS. For example, Muthén has conducted
unpublished simulation studies and has found that Ns of 150 to 200 may
be sufficient for medium-sized models (e.g., 10 to 15 indicators). Flora
and Curran (2004) confirmed these results by showing WLSMV produced
accurate test statistics, parameter estimates, and standard errors of CFA
models under a variety of conditions (e.g., sample sizes ranging from 100
to 1,000, varying degrees of non-normality and model complexity). In
addition, preliminary simulation research has shown that WLSMV per-
forms well with samples as small as 200 for variables with floor or ceiling
effects (although, as with continuous indicators, very skewed categorical
indicators call for larger Ns). More studies are needed to more fully estab-
lish the performance of WLSMV with various sample sizes and under
other conditions (e.g., skewness, model complexity, size of indicator rela-
tionships). Because requisite sample size is closely tied to the specific
model and data of a given study, general rules of thumb are of limited util-
ity. Instead, researchers are encouraged to use the Monte Carlo routines
available in the recent versions of some latent variable programs (e.g.,
Mplus) to determine the necessary N for their particular CFA investiga-
tions (see Chapter 10).

The framework and procedures of CFA differ considerably from nor-
mal theory CFA when categorical indicators are used. For instance, S is a
correlation matrix rather than a covariance matrix; for example, a tetra-
choric correlation matrix is used for binary indicators; a polychoric corre-
lation matrix is used for polytomous indicators. Within the Mplus frame-
work, various response models for categorical indicators are placed into a
unifying framework by the use of latent continuous response variables, y*

(e.g., Muthén & Asparouhov, 2002). In the latent response variable frame-
work, y* reflects the amount of an underlying continuous and normally
distributed characteristic (e.g., intelligence, attitude, personality trait) that
is required to respond in a certain category of an observed categorical vari-
able. For example, in the case of an IQ test, y* would express the level of
underlying intelligence needed to provide the correct response on a binary
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test item. This framework assumes that the latent variable could have been
measured in a finer-grained fashion; for example, individual differences in
intelligence could be more precisely measured by items that render more
units of discrimination than dichotomous or polytomous indicators. Cor-
relations of the underlying y* variables are used for S rather than the corre-
lations of observed variables. The underlying y* variables are related to
observed categorical variables by means of threshold parameters (τ).7 In
the case of a binary indicator (y = 0 or 1), the threshold is the point on y*

where y = 1 if the threshold is exceeded (and where y = 0 if the threshold is
not exceeded). Polytomous items have more than one threshold parame-
ter. Specifically, the number of thresholds is equal to the number of catego-
ries minus one; for example, an ordinal item with three categories (y = 0,
1, or 2) has two thresholds (i.e., point on y* where y = 1, point on y* where
y = 2). Thresholds are part of the mean structure of a CFA model and can
be used in multiple-group comparisons (Chapter 7, cf. intercept in-
variance)8 or in instances where the researcher wishes to convert the
parameters of the CFA model into item response theory (IRT) parameters
(described later in this chapter).

Moreover, because a correlation matrix for the y*s is used as S, the
observed variances of the indicators are not analyzed. Thus, as is not the
case in CFA with continuous indicators, the residual variances of categori-
cal indicators are not identified and are not estimated (because y* is a
latent variable, it does not have a metric). Therefore, the measurement
errors (θ) of the CFA model with categorical indicators are not free param-
eters but instead reflect the remainder of 1 minus the product of the
squared factor loading and factor variance; that is,

θ = 1 – λ2φ (9.6)

(or simply 1 minus the squared completely standardized factor loading).
Estimation of a CFA model with categorical indicators is now illus-

trated using an applied example. In this example, the researcher wishes to
verify a unifactorial model of alcohol dependence in a sample of 750 out-
patients. Indicators of alcoholism are binary items reflecting the presence/
absence of six diagnostic criteria for alcoholism (0 = criterion not met, 1 =
criterion met). Mplus syntax for this one-factor CFA is presented in Table
9.9. As with CFA with non-normal, continuous indicators, a raw data file
must be used as input. The third line of the VARIABLE command informs
Mplus that all six indicators are categorical. Mplus determines the number
of categories for each indicator (in this case, all indicators are dichoto-
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mous) and then calculates the appropriate type of correlation matrix (in
this case, tetrachoric). On the ANALYSIS command, the estimator is speci-
fied as WLSMV (although this is the Mplus default with categorical out-
comes). A mean structure analysis is also requested, although this is not
necessary in a typical single-group CFA. If mean structure is requested,
Mplus will output indicator thresholds, which are used in another illustra-
tion in this chapter. The df, overall fit, and other parameter estimates (e.g.,
factor loadings, factor variances) of the single-group CFA will not differ
regardless of whether TYPE=MEANSTRUCTURE is included in the com-
mand syntax. The MODEL and OUTPUT commands are written in the
same fashion as in CFA models with continuous indicators; for example,
as before, the unstandardized loading of the first indicator, Y1, is fixed to
1.0 by Mplus default to define the metric of the latent factor. Beginning
with Version 3.1, Mplus provides modification indices (and nested χ2 eval-
uation; see below) when the WLSMV estimator is employed. WLSMV-
based modification indices and associated values (e.g., expected parameter
change) are interpreted in the same manner as CFA with continuous out-
comes (see Chapter 5). The final command in Table 9.9 (SAVEDATA) is
not necessary for the current CFA, but is to be used in a forthcoming illus-
tration of nested model evaluation in context of the WLSMV estimator.

Selected Mplus output of the one-factor CFA results appear in Table
9.10. The first section of the output provides the proportions of the sample
that endorsed each diagnostic criterion of alcohol dependence (e.g., 77.6%
of the sample met the criterion assessed by the Y1 indicator). As noted ear-
lier, the estimation process benefits from an absence of highly skewed indi-
cators (e.g., to ensure that univariate and bivariate distributions contain
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TABLE 9.9. Mplus Syntax for Conducting CFA with Categorical Indicators

TITLE:    UNIFACTORIAL MODEL OF ALCOHOLISM
DATA:     FILE IS BINARY.DAT;

FORMAT IS F4,F2,5F1;
VARIABLE: NAMES ARE ID Y1-Y6;

USEV = Y1-Y6;
CATEGORICAL ARE Y1-Y6;

ANALYSIS: ESTIMATOR=WLSMV;
TYPE = MEANSTRUCTURE;  ! this command not necessary for

standard CFA
MODEL:    ETOH BY Y1-Y6;
OUTPUT:   SAMPSTAT MODINDICES(10.00) STAND RESIDUAL TECH2;
SAVEDATA: DIFFTEST = DERIV.DAT;  ! this command is to be used for

nested chi2
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TABLE 9.10. Selected Mplus Output of One-Factor CFA of Alcohol Dependence Using
Binary Indicators

SUMMARY OF CATEGORICAL DATA PROPORTIONS
Y1
Category 1    0.224
Category 2    0.776

Y2
Category 1    0.345
Category 2    0.655

Y3
Category 1    0.107
Category 2    0.893

Y4
Category 1    0.213
Category 2    0.787

Y5
Category 1    0.351
Category 2    0.649

Y6
Category 1    0.207
Category 2    0.793

SAMPLE STATISTICS

ESTIMATED SAMPLE STATISTICS

SAMPLE TETRACHORIC CORRELATIONS
Y1 Y2 Y3 Y4 Y5
________ ________ ________ ________ ________

Y1
Y2 0.494
Y3 0.336 0.336
Y4 0.610 0.513 0.479
Y5 0.632 0.515 0.362 0.572
Y6 0.437 0.317 0.277 0.521 0.468

TESTS OF MODEL FIT

Chi-Square Test of Model Fit
Value 9.540*
Degrees of Freedom 9**
P-Value 0.3889

*   The chi-square value for MLM, MLMV, MLR, WLSM and WLSMV cannot
be used for chi-square difference tests.    MLM, MLR and WLSM
chi-square difference testing is described in the Mplus Technical
Appendices at www.statmodel.com.
See chi-square difference testing in the index of the Mplus
User’s Guide.

**  The degrees of freedom for MLMV and WLSMV are estimated
according to a formula given in the Mplus Technical Appendices at
www.statmodel.com.
See degrees of freedom in the index of the Mplus User’s Guide.

(cont.)
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TABLE 9.10. (cont.)

Chi-Square Test of Model Fit for the Baseline Model

Value 694.433
Degrees of Freedom 9
P-Value 0.0000

CFI/TLI
CFI    0.999
TLI    0.999

Number of Free Parameters 12

RMSEA (Root Mean Square Error Of Approximation)

Estimate 0.009

WRMR (Weighted Root Mean Square Residual)

Value 0.519

MODEL RESULTS
Estimates S.E. Est./S.E. Std StdYX

ETOH    BY
Y1 1.000 0.000 0.000 0.775 0.775
Y2 0.822 0.072 11.407 0.637 0.637
Y3 0.653 0.092 7.107 0.506 0.506
Y4 1.031 0.075 13.721 0.799 0.799
Y5 1.002 0.072 13.880 0.776 0.776
Y6 0.759 0.076 10.024 0.589 0.589

Thresholds
Y1$1 -0.759 0.051 -14.910 -0.759 -0.759
Y2$1 -0.398 0.047 -8.448 -0.398 -0.398
Y3$1 -1.244 0.061 -20.305 -1.244 -1.244
Y4$1 -0.795 0.051 -15.457 -0.795 -0.795
Y5$1 -0.384 0.047 -8.158 -0.384 -0.384
Y6$1 -0.818 0.052 -15.796 -0.818 -0.818

Variances
ETOH 0.601 0.063 9.609 1.000 1.000

R-SQUARE

Observed
Variable

Residual
Variance R-Square

Y1 0.399 0.601
Y2 0.594 0.406
Y3 0.744 0.256
Y4 0.361 0.639
Y5 0.397 0.603
Y6 0.653 0.347



several observations per cell). In the next section, the sample tetrachoric
correlations reflect the zero-order relationships among the six y* variables.
Because these coefficients are based on the latent variable underlying the
binary indicators, they differ in value from phi correlations, which are
based on observed measures. The results indicate that the one-factor
model fits the data well, χ2 (9) = 9.54, p = .39, RMSEA = 0.009,
TLI = 0.999, CFI =.999. Note that Mplus does not provide an SRMR fit sta-
tistic. Presumably, this is due to recent evidence from simulation research
(Yu, 2002) that the SRMR does not perform well with binary indicators.9

The unstandardized factor loadings are probit coefficients (because a
linear equation can be written for the y*s), which can be converted to
probabilities if desired (see below). In the CFA, the y* variances are stan-
dardized to 1.0, and thus parameter estimates should be interpreted
accordingly. Squaring the completely standardized factor loadings yields
the proportion of variance in y* that is explained by the latent factor
(e.g., Y1 = .7752 = .601), not the proportion of variance explained in the
observed measure (e.g., Y1), as in the interpretation of CFA with con-
tinuous indicators. Similarly, the residual variances convey the proportion
of y* variance that is not accounted for by the latent factor; for example,
for Y1: 1 – .7752 = .399.

As with SB χ2, the difference in χ2 values for nested models estimated
with WLSMV is not distributed as χ2. In addition, the calculation of model
df is not the same as in CFA solutions estimated with ML (in fact, compu-
tation of WLSMV model df is not straightforward; see Muthén & Muthén,
1998–2004). To obtain the correct χ2 difference test with the WLSMV esti-
mator, a two-step procedure is required. In the first step, the less restricted
model is estimated and the DIFFTEST option of the SAVEDATA command
is used to save the derivatives needed for the nested χ2 test. In the second
step, the more constrained model is fitted to the data and the χ2 difference
test is calculated using the derivatives from both analyses.

To illustrate this procedure, a second model is estimated in which the
five previously freely estimated factor loadings are constrained to equality
(tau equivalence; see Chapter 7). The syntax for this model is provided in
Table 9.11. In addition to this constraint, the Mplus syntax is modified
such that the DIFFTEST option of the ANALYSIS command is used to
inform the program of the name of the data file that contains the deriva-
tives from the less restricted model. As shown in Table 9.11, Mplus pro-
vides the model χ2 of the new solution as well as the χ2 difference test for
the two solutions. These results are interpreted in the same fashion as χ2
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TABLE 9.11. Nested Model Comparison with WLSMV: One-Factor CFA of Alcohol
Dependence with Binary Indicators (Factor Loadings Constrained to Equality)

Syntax File

TITLE:    UNIFACTORIAL MODEL OF ALCOHOLISM (EQUAL FACTOR LOADINGS)
DATA:     FILE IS BINARY.DAT;

FORMAT IS F4,F2,5F1;
VARIABLE: NAMES ARE ID Y1-Y6;

USEV = Y1-Y6;
CATEGORICAL ARE Y1-Y6;

ANALYSIS: ESTIMATOR=WLSMV;
TYPE = MEANSTRUCTURE;
DIFFTEST = DERIV.DAT;         ! line added for chisq diff test

MODEL:    ETOH BY Y1@1 Y2-Y6 (1);       ! equal Y2-Y6 lambdas
OUTPUT:   SAMPSTAT MODINDICES(10.00) STAND RESIDUAL TECH2;

Selected Output

TESTS OF MODEL FIT

Chi-Square Test of Model Fit

Value 40.033*
Degrees of Freedom 10**
P-Value 0.0000

Chi-Square Test for Difference Testing

Value 27.958
Degrees of Freedom 4**
P-Value 0.0000

*   The chi-square value for MLM, MLMV, MLR, WLSM and WLSMV cannot
be used for chi-square difference tests. MLM, MLR and WLSM
chi-square difference testing is described in the Mplus Technical
Appendices at www.statmodel.com.
See chi-square difference testing in the index of the Mplus
User’s Guide.

**  The degrees of freedom for MLMV and WLSMV are estimated according
to a formula given in the Mplus Technical Appendices at
www.statmodel.com.
See degrees of freedom in the index of the Mplus User’s Guide.



difference testing with the ML estimator; that is, χ2
diff (4) = 27.96, p < .001

indicates that the restriction of equal factor loadings significantly degrades
the fit of the model.

Comparison with Item Response Theory (IRT) Models

It is well known that factor analysis with binary outcomes is equivalent to
a two-parameter normal ogive item response theory model (e.g., Ferrando
& Lorenza-Sevo, 2005; Glöckner-Rist & Hoijtink, 2003; MacIntosh &
Hashim, 2003; Moustaki, Jöreskog, & Mavridis, 2004; Muthén, Kao, &
Burstein, 1991; Reise, Widaman, & Pugh, 1993; Takane & de Leeuw,
1987). Although a detailed review of IRT is beyond scope of this book, a
few fundamental aspects are noted to demonstrate the comparability of
IRT and CFA.

IRT, which has also been referred to as latent trait theory, relates
characteristics of items (item parameters) and characteristics of individu-
als (latent traits) to the probability of endorsing a particular response
category (Bock, 1997; Lord, 1980). Whereas CFA aims to explain the
correlations among test items (or the y*s underlying the test items), IRT
models account for participants’ item responses. In other words, an IRT
model specifies how both the level of the latent trait and the item prop-
erties are related to a person’s item responses (which can be measured by
either binary or polytomous items). The probability of answering cor-
rectly or endorsing a particular response category is graphically depicted
by an item response function (IRF, also referred to as an item characteristic
curve, ICC). IRFs reflect the nonlinear (logit) regression of a response
probability on the latent trait. Most often, applied IRT models entail a
single latent trait, although multidimensional IRT models can be ana-
lyzed (Bock, Gibbons, & Muraki, 1988; Embretson & Reise, 2000).
Many objectives of IRT are similar to those of CFA. For instance, IRT
can be used to explore the latent dimensionality of categorical outcomes,
to evaluate the psychometric properties of a test, and to conduct differ-
ential item functioning analysis (DIF; see Chapter 7). The results of an
IRT model can be used to assign sample participants a latent trait level
estimate (akin to a factor score) on a standard z score metric (test scor-
ing). IRT is frequently used in the domains of computerized and educa-
tional testing (e.g., Scholastic Aptitude Test, Graduate Record Examina-
tion) for item parameter estimation, test calibration, and test equating
and scoring (e.g., identification of items that yield the highest measure-
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ment precision/information about the examinee in a given trait domain,
development of parallel tests or shorter test forms, equating scores across
different subsets of items).

In addition to the latent trait level (denoted θ in the IRT literature),
either one, two, or three item parameters can be estimated in an IRT
model. The choice of IRT model should be based on substantive and
empirical considerations (e.g., model fit, although IRT currently pro-
vides limited information in regard to goodness of model fit). Examples
with binary items are discussed below, although these models can be
readily extended to polytomous outcomes. The simplest model is the one-
parameter logistic model (1PL), also known as the Rasch model (Rasch,
1960). In the 1PL model, the probability of responding positively on an
item (e.g., correct response on an ability test, meeting diagnostic criterion
in the alcoholism example) is predicted by the latent trait (θ) and a single
item parameter, item difficulty (denoted either as b or β in the IRT litera-
ture). This is represented by the logistic function

P(yis = 1 | θs, bi) = exp(θs – bi) / [1 + exp(θs – bi )] (9.7)

in other words, the probability (P) that y equals 1 for a specific item (i)
and participant (s), given ( | ) the participant’s trait level (θs) and the item’s
difficulty (bi), is the exponent (exp) of the difference of θs and bi, divided
by 1 plus the exponent (exp) of the difference of θs and bi.

An item difficulty conveys the level of the latent trait (θ) where there
is a 50% chance of a positive response on the item; for example, if b = .75,
there is a .50 probability that a person with a trait level of .75 will respond
positively to the item. The item difficulty parameter (b) represents the
location of the curve along the horizontal axis of the IRF; for example, rel-
atively “easier” items have lower b values and are represented by curves
closer to the horizontal axis. Accordingly, b is inversely related to a
proportion-correct score (p; or proportion of items endorsed if the pres-
ence/absence of a symptom, trait, attitude, and so forth). Item difficulties
have been alternatively referred to in the IRT literature as item threshold or
item location parameters. In fact, item difficulty parameters are analogous
to item thresholds (τ) in CFA with categorical outcomes (cf. Muthén et al.,
1991).

In a two-parameter logistic model (2PL), an item discrimination para-
meter is included (denoted either as a or α in the IRT literature). Thus, the
probability of a positive response is predicted by the logistic function
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Item discrimination parameters are analogous to factor loadings in
CFA and EFA because they represent the relationship between the latent
trait and the item responses. Thus, discrimination parameters influence
the steepness of the slope of the IRF curves. For instance, items with rela-
tively high a parameter values are more strongly related to the latent vari-
able (θ) and have steeper IRF curves. As can be seen in the above equation,
item discrimination (a) is a multiplier of the difference between trait level
(θ) and item difficulty (b). This reflects the fact that the impact of the dif-
ference between θ and b on the probability of a positive response (P)
depends on the discriminating power of the item (Embretson & Reise,
2000).

A three-parameter logistic model (3PL) can also be estimated in IRT,
which includes a “guessing” parameter (denoted either as c or γ). This
additional parameter (also referred to as an “asymptote”) is used to repre-
sent IRF curves that do not fall to zero on the vertical axis (i.e., > .00 prob-
ability of a positive response for persons with very low θ levels). In other
words, if an item can be correctly answered by guessing (as in true/false or
multiple-choice items on an aptitude test), the probability of a positive
response is greater than zero even for persons with low levels of the latent
trait characteristic. Accordingly, 3PL models are most germane to IRT anal-
yses of aptitude or ability tests (e.g., intelligence and educational testing).

Unlike the case with 1PL and 2PL models, there currently does not
exist a CFA counterpart to the 3PL IRT model (i.e., there is no analogous
CFA parameter for the IRT “guessing” parameter). As will be seen shortly,
the one-factor CFA model of alcoholism (Tables 9.9 and 9.10) is analogous
to a 2PL IRT model; cf. factor loadings and item thresholds to item dis-
crimination and item difficulty parameters, respectively. A CFA counter-
part to a 1PL IRT model could be estimated by holding the factor loadings
equal across items.

To illustrate these concepts, a unidimensional 2PL IRT model is fit to
the alcohol dependence data using the BILOG-MG software program (Ver-
sion 3.0; Zimowski, Muraki, Mislevy, & Bock, 2003). Item parameters are
estimated by a marginal maximum likelihood method (MML), the most
commonly used estimator in IRT analyses (Embretson & Reise, 2000). The
syntax and selected output of this analysis are presented in Table 9.12. The
first section of the selected output provides descriptive and classical test
statistics. #TRIED indicates that there were no missing responses in the
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TABLE 9.12. BILOG-MG 3.0 Estimation of a Unidimensional Two-Parameter Logistic
IRT Model of Alcohol Dependence

Syntax File

IRT MODEL OF
ALCOHOLISM CRITERIA
>GLOBAL DFName = ‘C:\BINARY.DAT’,

NPArm = 2;
>LENGTH NITems = (6);
>INPUT NTOtal = 6,

NIDchar = 4;
>ITEMS ;
>TEST1 TNAme = ‘ETOHDEP’,

INUmber = (1(1)6);
(4A1, 1X, 9A1)
>CALIB ACCel = 1.0000;
>SCORE ;

Selected Output

ITEM STATISTICS FOR SUBTEST ETOHDEP
ITEM*TEST CORRELATION

ITEM NAME #TRIED #RIGHT PCT LOGIT/1.7 PEARSON BISERIAL
————————————————————————————————————

1 ITEM0001 750.0 582.0 77.6 -0.73 0.486 0.678
2 ITEM0002 750.0 491.0 65.5 -0.38 0.409 0.527
3 ITEM0003 750.0 670.0 89.3 -1.25 0.267 0.449
4 ITEM0004 750.0 590.0 78.7 -0.77 0.514 0.724
5 ITEM0005 750.0 487.0 64.9 -0.36 0.500 0.644
6 ITEM0006 750.0 595.0 79.3 -0.79 0.358 0.508

————————————————————————————————————

SUBTEST ETOHDEP;  ITEM PARAMETERS
ITEM INTERCEPT SLOPE THRESHOLD LOADING ASYMPTOTE

————————————————————————————————————
ITEM0001 | 1.213 | 1.218 | -0.996 | 0.773 | 0.000

| 0.123* | 0.155* | 0.085* | 0.099* | 0.000*
| | | | |

ITEM0002 | 0.517 | 0.831 | -0.622 | 0.639 | 0.000
| 0.067* | 0.097* | 0.085* | 0.075* | 0.000*
| | | | |

ITEM0003 | 1.515 | 0.656 | -2.309 | 0.549 | 0.000
| 0.104* | 0.099* | 0.276* | 0.083* | 0.000*
| | | | |

ITEM0004 | 1.319 | 1.292 | -1.021 | 0.791 | 0.000
| 0.136* | 0.171* | 0.086* | 0.105* | 0.000*
| | | | |

ITEM0005 | 0.608 | 1.211 | -0.502 | 0.771 | 0.000
| 0.088* | 0.159* | 0.068* | 0.101* | 0.000*
| | | | |

ITEM0006 | 1.020 | 0.736 | -1.386 | 0.593 | 0.000
| 0.080* | 0.092* | 0.144* | 0.074* | 0.000*

————————————————————————————————————
* STANDARD ERROR



sample of 750 outpatients. #RIGHT provides the frequency with which the
item (criterion) was endorsed in the sample. PCT provides the proportion
of individuals who responded positively to the item (cf. “Summary of Cat-
egorical Data Proportions” in Mplus, Table 9.10). The last two columns
present item-total correlations, both Pearson coefficients and point-biserial
correlations that have been adjusted for the base rate of responses.

The second portion of the selected output presents the item calibra-
tions (i.e., IRT parameter estimates). The item discrimination (a) and item
difficulty (b) parameter estimates are provided under the “Slope” and
“Threshold” columns, respectively. All asymptote parameters (c, “guess-
ing”) equal zero because a 2PL model was specified. As in CFA, the item
loadings are interpreted as the correlations between the items and the
latent traits (θ). Loadings can be calculated by the equation

a / SQRT(1 + a2) (9.9)

for example, loading for Y1 = 1.218 / SQRT(1 + 1.2182) = .773. Item inter-
cepts can be computed by the equation

–ab (9.10)

for example, intercept for Y1 = –(1.218 × –0.996) = 1.213. Item thresholds
(b) always have the opposite sign of item intercepts. On the basis of these
results, it appears that items Y1, Y4, and Y5 have the highest discrimina-
tion; that is, are more strongly related to θ, such that the probability of a
positive response changes most rapidly with a change in θ. The Y3 indica-
tor has the lowest difficulty (b3 = -2.309); that is, lower levels of the latent
dimension of Alcohol Dependence (θ) are required for a positive response
on the Y3 criterion (e.g., when θ = –2.309, there is a 50% likelihood that
this criterion will be endorsed). As noted earlier, b is related to the rate of
item endorsement in the sample (e.g., p3 = .893, Table 9.12) and the type
of sample (e.g., larger b values would be likely if a community sample
rather than an outpatient sample was used).

Using the 2PL equation presented earlier, an IRF curve can be plotted
for each item. IRFs for three items are displayed in Figure 9.1. The form of
the curves depict how change in the latent trait (θ, horizontal axis) relate
to change in the probability of a positive response (P, vertical axis). The
three curves have some similarities. For example, the steepest section of
each is the middle of the curve, where small changes in θ are associated
with the greatest increase in probability of a positive response. The end of
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FIGURE 9.1. Item response functions for three selected alcohol dependence cri-
teria (Y1, Y3, Y5).



each curve indicates that once a certain trait level is reached (i.e., θ ≈ 1.5),
increases in the trait are not associated with appreciable change in item
endorsement. Several differences are also evident. For instance, although
items Y1 and Y5 have similar discrimination parameters (a = 1.218 and
1.211, respectively), Y5 is a “less difficult” item (b = –0.996 and –0.502,
respectively). Item difficulty describes the extent to which items differ in
probabilities across trait levels. Thus, although items Y1 and Y5 have simi-
lar a parameters, the shape of their curves differs somewhat because lower
levels of θ are needed for a positive response to item Y5 (its IRF curve is a
bit closer to the horizontal axis than is the IRF curve of Y1). Item Y3 has
the relatively weakest relationship with θ (a = .656); hence, the probability
of a positive response on Y3 changes most slowly with a change in θ. Item
3 also has the lowest threshold (b = –2.309).

With this background, the parallels of CFA and IRT should become
clear. Comparing the CFA estimates provided in Table 9.10 and the IRT
estimates provided in Table 9.12, it can be seen that the item loadings are
quite similar in value (e.g., Y1 = .775 and .773 for CFA and IRT, respec-
tively). Because factor loadings are closely linked to item discrimination
parameters, the CFA factor loadings can be roughly interpreted in IRT
terms (i.e., item Y4 has the highest factor loading and thus evidences the
highest discrimination). However, it is possible to directly convert CFA
parameters into IRT parameters (cf. Muthén et al., 1991; Muthén &
Asparouhov, 2002). Using CFA parameterization (and symbols), an IRT
discrimination parameter can be calculated as

a = λ / SQRT(θ) (9.11)

where λ is the factor loading, and θ is the residual variance (not the trait
level, as in IRT parameterization). For example, based on the CFA parame-
ter estimates presented in Table 9.10, the item discrimination of Y1 would
be calculated as a1 = .775 / SQRT(.399) = 1.23 (cf. a1 = 1.22 in Table 9.12).

Similarly, the item thresholds in Table 9.10 correspond to the item dif-
ficulty parameters that were estimated in the IRT analysis; for example, as
the rank order of the item thresholds in the CFA is the same as in IRT, the
results of the CFA also convey that item Y3 has the lowest difficulty. How-
ever, again using CFA parameterization (and symbols), an IRT difficulty
parameter can be directly calculated as

b = τ / λ (9.12)
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where τ is the CFA item threshold, and λ is the CFA factor loading. Thus,
the item difficulty parameter of item Y1 is computed b1 = –0.759 / .775 =
–0.979 (cf. b1 = –0.996 in Table 9.12).

Table 9.13 presents a summary of all CFA-converted IRT parameters
along with the item parameters estimated in BILOG-MG. Standard errors
of IRT parameter estimates can also be obtained from CFA using the delta
method (see MacIntosh & Hashim, 2003, for details). In Table 9.13 it can
be seen that, although both approaches yield very similar results, the CFA-
converted estimates and IRT estimates do not correspond exactly. This can
be attributed mainly to the use of differing estimation methods (WLSMV
in CFA, MML in IRT).

As noted earlier, IRT is frequently used to assess differential item func-
tioning (DIF) of test items. Muthén (1988; Muthén et al., 1991) has shown
that MIMIC models (see Chapter 7) with categorical indicators are
equivalent to DIF analysis in the IRT framework (see also Meade &
Lautenschlager, 2004). Recently, MacIntosh and Hashim (2003) provided
an applied illustration of converting MIMIC model parameters (and stan-
dard errors) to IRT in the context of a DIF analysis. The MIMIC parameter
estimates pertaining to covariate → item direct effects can be used to cal-
culate item conditional probabilities (i.e., likelihood of item endorsement,
given various levels of the covariate and latent factor). Moreover, Muthén
(1998; Muthén et al., 1991) notes that the MIMIC framework offers sev-
eral potential advantages over IRT. These include the ability to (1) use
either continuous covariates (e.g., age) or categorical background vari-
ables (e.g., gender); (2) model a direct effect of the covariate on the latent
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TABLE 9.13. Conversion of CFA Parameters to IRT Parameters:
Two-Parameter Logistic IRT Model of Alcohol Dependence

Item

CFA to IRT IRT

a b a b

Y1 1.23 –0.98 1.22 –1.00
Y2 0.83 –0.62 0.83 –0.62
Y3 0.59 –2.46 0.66 –2.31
Y4 1.33 –1.00 1.29 –1.02
Y5 1.23 –0.49 1.21 –0.50
Y6 0.73 –1.39 0.74 –1.39

Note. a = item discrimination parameter; b = item difficulty parameter;
CFA, confirmatory factor analysis; IRT, item response theory.



factor (in addition to direct effects of the covariate on test items); (3)
readily evaluate multidimensional models (i.e., measurement models with
> one latent factor); and (4) incorporate an error theory (e.g., measure-
ment error covariances). Indeed, a general advantage of the covariance
structure analysis approach is that the IRT model can be embedded in a
larger structural equation model (e.g., Lu, Thomas, & Zumbo, 2005).

Other Potential Remedies for Indicator Non-Normality

Three other remedial strategies for non-normality are briefly presented:
bootstrapping, item parceling, and data transformation. The advantages
and disadvantages of each method are summarized. These strategies are
reviewed primarily to increase the reader’s familiarity with alternative
approaches that have been used for dealing with non-normal data. How-
ever, given the advent of other full information estimators (e.g., MLM,
WLSMV) and the limitations associated with each method, utilization of
these alternative strategies is becoming less common.

Bootstrapping

Bootstrapping is a resampling procedure in which the original sample
serves as the population (cf. Efron & Tibshirani, 1993; Mooney & Duval,
1993). Multiple samples (with the same N as the original sample) are ran-
domly drawn from the original sample with replacement (i.e., a given case
may be randomly selected more than once in any given bootstrapped data
set), the CFA model is estimated in each data set, and the results are aver-
aged over the data sets. The number of bootstrapped samples can be speci-
fied by the researcher, but should be sufficiently large to foster the quality
of the averaged estimates (e.g., 500 samples is common). Using the one-
factor CFA model presented earlier in this chapter (Table 9.5, N = 870),
bootstrapping might entail generating 500 random samples of N = 870
from the original data set, fitting the one-factor CFA model in each sample
(i.e., 500 times), and then averaging the results (e.g., parameter estimates,
standard errors) across the 500 analyses. The procedure is most appropri-
ate for models with non-normal, continuous indicators. Bootstrapping
should not be confused with Monte Carlo simulation, although the two
procedures have some similarities (see Chapter 10 for a discussion of
Monte Carlo simulation). In Monte Carlo simulation, multiple samples
(e.g., > 500) are randomly generated on the basis of population parameter
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values and other data aspects (e.g., sample size, amount of non-normality)
that are prespecified by the researcher (i.e., unlike the situation in boot-
strapping, the researcher has population parameters on hand, but not a
sample from the population). As in bootstrapping, the results of models
fitted in the simulated data sets are averaged to examine the behavior of
the estimates (e.g., stability and precision of parameter estimates and test
statistics).

Bootstrapping is based on the notion that when the distributional
assumptions of normal-theory statistics are violated, an empirical sampling
distribution can be relied upon to describe the actual distribution of the
population on which the parameter estimates are based. Unlike theoretical
sampling distributions, the bootstrapped sampling distribution is concrete
because it is based on the multiple samples spawned from the original data
set. Accordingly, the bootstrapped averaged estimates and their standard
errors (and possibly fit statistics, depending on the software program
used) can be compared against the results from the original sample to eval-
uate the stability of model parameters.

The bootstrapping procedure is straightforward in most latent vari-
able software programs. Table 9.14 presents Amos Basic syntax for gener-
ating bootstrapped estimates of the one-factor CFA presented earlier in
Table 9.5 (1 factor, N = 870, 5 non-normal, continuous indicators). A raw
data file must be used as input (in this example, the data are read from an
SPSS .sav file). The command “sem.Bootstrap 500” instructs Amos to gen-
erate 500 bootstrap samples. The command “sem.ConfidenceBC 90” is
used to obtain bootstrapped bias-corrected 90% confidence intervals for
freely estimated parameters (a value other than 90 can be specified, if
desired). The remaining syntax specifies the CFA model to be tested.

The first portion of the selected output in Table 9.14 provides the
normal-theory, ML parameter estimates and standard errors for the one-
factor solution. For the sake of brevity, only unstandardized factor load-
ings are presented. These results are identical to the EQS output in Table
9.7. The next section of the output provides results from the bootstrapped
samples. The first column, “SE,” is the bootstrap estimate of the standard
errors of the factor loadings (specifically, these values represent the stan-
dard deviations of the parameter estimates across the 500 bootstrapped
samples). As in the MLM illustration (Table 9.7), the bootstrapped stan-
dard errors are considerably larger than the maximum likelihood esti-
mates; for example, X2: the bootstrapped standard error of .0606 is 74%
larger than the ML estimate of .0349. It is noteworthy that the boot-
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TABLE 9.14. Amos Basic Syntax and Selected Output for Bootstrapping a One-
Factor CFA with Non-Normal, Continuous Indicators

Syntax File

‘ Example of Bootrapping in Amos 5.0
‘ One-factor model
‘
Sub Main ()
Dim sem As New AmosEngine

sem.Bootstrap 500
sem.TextOutput
sem.Standardized
sem.ConfidenceBC 90

sem.BeginGroup “nonml.SAV”
sem.Structure “X1 = (1) FACTOR1 + (1) th1"
sem.Structure “X2 =       FACTOR1 + (1) th2"
sem.Structure “X3 =       FACTOR1 + (1) th3"
sem.Structure “X4 =       FACTOR1 + (1) th4"
sem.Structure “X5 =       FACTOR1 + (1) th5"
sem.Structure “th1 <—> th3"

End Sub

Selected Output

Maximum Likelihood Estimates

Regression Weights: (Group number 1 - Model 1)

Estimate S.E. C.R. P Label
X1 <—- FACTOR1 1.0000
X2 <—- FACTOR1 .7027 .0349 20.1211 ***
X3 <—- FACTOR1 1.0682 .0337 31.7119 ***
X4 <—- FACTOR1 .9181 .0422 21.7623 ***
X5 <—- FACTOR1 .7483 .0334 22.4031 ***

Bootstrap (Group number 1 - Model 1)

Parameter SE SE-SE Mean Bias SE-Bias
X1 <—- FACTOR1 .0000 .0000 1.0000 .0000 .0000
X2 <—- FACTOR1 .0606 .0019 .7076 .0049 .0027
X3 <—- FACTOR1 .0429 .0014 1.0709 .0027 .0019
X4 <—- FACTOR1 .0627 .0020 .9172 -.0009 .0028
X5 <—- FACTOR1 .0581 .0018 .7489 .0006 .0026

90% confidence intervals (bias-corrected percentile method)

Parameter Estimate Lower Upper P
X1 <—- FACTOR1 1.0000 1.0000 1.0000 ...
X2 <—- FACTOR1 .7027 .5904 .7962 .0072
X3 <—- FACTOR1 1.0682 1.0023 1.1426 .0043
X4 <—- FACTOR1 .9181 .8217 1.0326 .0027
X5 <—- FACTOR1 .7483 .6625 .8568 .0030



strapped standard errors are very similar in magnitude to the standard
errors produced by MLM; for example, X2 = .062 and .061 for MLM and
bootstrap, respectively (see Table 9.7). Indeed, the primary objective of
bootstrapping is often to obtain better standard errors for the purpose of
significance testing, calculation of confidence intervals, and so forth. The
second column, “SE-SE,” presents standard errors of the bootstrapped
standard error estimates. These should be low in magnitude, given the
number of bootstrapped samples and original sample size. Values in the
“Mean” column are the average unstandardized factor loadings across the
500 bootstrap samples (virtually the same as the original sample estimates,
although this is not always the case; cf. Arbuckle & Wothke, 1999). Values
in the “Bias” column represent the difference between the original esti-
mates and the averaged bootstrapped estimates (e.g., X2 = .7076 – .7027 =
.0049). The last column, “SE-Bias” presents the standard errors of these
bias estimates. The final section of the output lists the bias-corrected 90%
confidence intervals of the unstandardized factor loadings; that is, confi-
dence intervals of the original sample parameter estimates using standard
errors that have been adjusted on the basis of bootstrapped results. These
biased-correct intervals are interpreted in the same fashion as ordinary
confidence intervals; for example, it is 90% likely that the true population
value of the factor loading of X2 falls between .590 and .796 (because this
interval does not include zero, the parameter estimate is significantly dif-
ferent from zero). Results in the “P” column indicate how small the confi-
dence interval must be to include the value of zero. For example, the p
value of .0072 indicates that the confidence interval for X2 must be at the
99.3% level in order for the lower-bound value to be zero (Byrne, 2001).

Yung and Bentler (1996) warn researchers to avoid believing that
bootstrapping will always yield more accurate and reliable results. The
success of bootstrapping depends on a number of aspects, including (1)
the representativeness of the original sample to the population (if not rep-
resentative, bootstrapping will produce misleading results); and (2) “the
sampling behavior of a statistic being the same when the samples are
drawn from the empirical distribution and when they are taken from the
original population” (p. 113, Bollen & Stine, 1993). Bollen and Stine
(1993) have also demonstrated that the bootstrap distribution will follow a
noncentral χ2 distribution rather than a central χ2 distribution in accord
with statistical theory (due to sampling fluctuation in the original sample).
These authors have introduced transformation procedures that seem to
work reasonably well to minimize this problem. Moreover, bootstrapping
is not a remedy for small sample size (Yung & Bentler, 1996). As these
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authors note, “the success of the bootstrap depends on the accuracy of the
estimation of the parent distribution (and/or under a particular model) by
the observed sample distribution” (p. 223). Thus, a very small sample will
not render an acceptable level of accuracy. Finally, Yung and Bentler
(1996) assert that while bootstrapping may provide more accurate stan-
dard error estimates, this approach is not necessarily the best method. The
authors acknowledge that other approaches (such as using a non-normal
theory estimator such as MLM) may be preferred to acquire certain statisti-
cal properties such as efficiency, robustness, and so forth.

Item Parceling

Another remedial approach that has been used to address non-normality is
item parceling. A parcel (also referred to as a “testlet”) is a sum or average
of several items that presumably measure the same construct. For guide-
lines on constructing parcels, see Yuan, Bentler, and Kano (1997). The pri-
mary potential advantages of using parcels are that (1) parcels may be
more apt to approximate normality than individual items (thereby, the
assumptions of ML are more likely to be met); (2) it offers improved reli-
ability and relationships with other variables (Kishton & Widaman, 1994);
and (3) models based on parcels may be considerably less complex (i.e.,
smaller input matrix, fewer estimated parameters) than models based on
individual items (it has been assumed that less model complexity will fos-
ter the stability of parameter estimates, but see below).

However, there are a variety of potential problems with using item
parcels as indicators in CFA models. The most serious problem occurs
when the underlying structure of the items in a parcel is not unidi-
mensional. If such instances (i.e., one or more parcels is multifactorial),
the use of parcels will obscure rather than clarify the latent structure of the
data (West et al., 1995). Latent structures may also be obscured when the
uniquenesses (measurement error variances) of items within a given parcel
correlate with the unique or common factors of items in other parcels
(Bandalos & Finney, 2001; Hall, Snell, & Foust, 1999). In many situations,
the use of parcels may not be feasible, such as in instances where there are
too few items to form a sufficient number of parcels. For example, in the
case of binary indicators, it may take 10 or more items to create a parcel
that approximates normality. If the entire scale contains only 20–30 items,
then only two or three parcels can be created. Particularly when the intent
of the CFA is to validate a testing instrument (or other multicomponent

408 CONFIRMATORY FACTOR ANALYSIS FOR APPLIED RESEARCH



measure), the use of a small handful of indicators (parcels) will render an
overliberal and incomplete test of latent structure (West et al., 1995). In
addition, simulation research has shown that the likelihood of improper or
nonconvergent solutions increases as the number of parcels decreases
(Nasser & Wisenbaker, 2003). Other research has shown that, under many
different conditions (e.g., sample size), parcels do not outperform models
based on individual items (Hau & Marsh, 2004; Marsh et al., 1998). For
example, in the past parceling has been considered a good method of
addressing non-normality when sample size does not permit the use of a
non-normal theory estimator such as WLS (Browne, 1984b). With the
advent of non-normal theory estimators with less restrictive sample size
requirements (e.g., WLSMV in Mplus), item-level analysis is now more
feasible.

Data Transformation

A final potential remedial strategy for non-normality is to transform raw
scores of a variable so they more closely approximate a normal distribu-
tion. Different transformation procedures are available for different forms
of non-normality (e.g., logarithmic transformation for substantial negative
skewness; for an overview, see Tabachnick & Fidell, 2001). However, this
approach has a few possible drawbacks. First, transformation is not always
successful at reducing the skewness or kurtosis of a variable (e.g., data
with severe floor or ceiling effects). Transformed variables must be reas-
sessed in order to verify the success of the transformation in approximat-
ing normality at the uni- and multivariate levels. Second, in addition to
altering the distribution of variables, nonlinear transformation often
changes the relationships a variable has with other variables in the analy-
sis. Thus, the resulting fit statistics, parameter estimates, and standard
errors of a CFA based on transformed indicators may differ markedly from
an analysis based on the original variables (West et al., 1995). This may be
problematic for at least two reasons: (1) it “strains” reality if the true popu-
lation distribution is not normally distributed; and (2) it makes the
interpretability of the parameter estimates more complex. For example, if
the variable “years of education” was log transformed to approximate a
normal distribution, all resulting parameter estimates involving this vari-
able should be interpreted with respect to log years, not calendar years.
The latter issue is less salient when the original metric of a variable is arbi-
trary (e.g., Likert response scales of questionnaire items).
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SUMMARY

This chapter dealt with several situations often encountered in the analysis
of applied data sets (missing data, non-normal data, categorical data). As
noted at the outset of this chapter, these data situations, and the methods
of addressing them, are pertinent to any form of latent variable analysis
(e.g., structural regression models, latent growth models). The field of
latent variable statistical analysis has evolved tremendously over the past
several years. As shown in this chapter, latent variable software programs
are now well equipped to accommodate these data difficulties (e.g., direct
ML for missing data, estimators other than ML for non-normal or categori-
cal indicators). The final chapter of this book addresses another issue that
has received scant attention in SEM sourcebooks to date: determination of
the sample size needed to obtain sufficient power and precision of esti-
mates in CFA. As shown in Chapter 10, current latent variable software
programs offer elegant procedures for addressing this important question
(e.g., Monte Carlo evaluation).

NOTES

1. In addition, a single imputation (with added random variation) will pro-
duce parameter estimates that are not fully efficient (i.e., estimated variances of
the parameter estimates will be biased toward zero) (Allison, 2002; Schafer & Gra-
ham, 2002). This problem stems from the fact that the analysis would assume that
the missing data are predicted on the basis of equations containing true population
values. In other words, single imputation does not incorporate the uncertainty
about the predictions of the unknown missing values. Within a multiple imputa-
tion framework, uncertainty about these parameters is reflected by taking random
draws from the Bayesian posterior distribution of the parameters. The form of this
posterior distribution is described by Iversen (1985); procedures for random
draws from this distribution (e.g., data augmentation) are discussed by Schafer
(1997).

2. However, in view of the ease of conducting multiple imputation in current
software (e.g., SAS PROC MI), Allison (2003) recommends that more than five
imputations be computed to improve the estimates of standard errors and stability
of parameter estimates.

3. As Allison (2002) notes, the slight variability in multiply-imputed data
sets could lead to the awkward situation where different researchers obtain differ-
ent results from the same data and standard analyses. In addition, such variability
could promote unscrupulous uses of the procedure (e.g., repeat the multiple
imputation process until a “borderline” effect becomes statistically significant).
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4. John Graham (e.g., Schafer & Graham, 2002) has written downloadable
software routines for automating multiple imputation using NORM for LISREL
and EQS (mcgee.hhdev.psu.edu/missing/index.html).

5. In CFA, if one or more indicators of a latent factor are not continuous,
then an estimator other than ML must be used. However, this does not apply to
exogenous predictors (covariates) of latent factors. For example, in MIMIC mod-
els (where the covariate may be categorical dummy codes reflecting levels of
group; Chapter 7), ML is appropriate, assuming that indicators of the latent factors
are normal, continuous.

6. However, in the version 3.0 release of Mplus, ML can be used as an estima-
tor for CFA models with categorical outcomes when used in conjunction with
numerical integration (a computationally complex and time-consuming algorithm
that is needed when the posterior distribution for the latent variables does not
have a closed form expression). The primary advantage of this approach is the
ability to bring all the full information capabilities of ML into a categorical model
framework; for example, one can model missing data with categorical indicators
using direct ML. This method is also useful for modeling interaction effects
between continuous latent variables (cf. Klein & Moosbrugger, 2000).

7. Note that τ is also used to denote indicator intercepts in mean structure
analysis of continuous indicators (Chapter 7).

8. In addition, multiple-groups CFA with categorical outcomes also requires
the inclusion of scale factors (symbolized as ∆). Scale factors contain information
about the residual variance of y*, the factor loadings, and the factor variances (see
Muthén & Asparouhov, 2002, for more details).

9. As an alternative to SRMR, the results of Yu (2002) suggest that a cutoff of
≤ 1.0 on a relatively new fit statistic, the weighted root mean square residual
(WRMR), can be used for models with binary outcomes when Ns ≥ 250.
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10

Statistical Power
and Sample Size

In this closing chapter, appropriate strategies are presented for deter-
mining the sample size required to achieve adequate statistical power
and precision of parameter estimates in a CFA study. This topic is often
neglected in SEM sourcebooks and widely misunderstood in the
applied literature. For instance, applied researchers often cite a gen-
eral guideline (e.g., a subject: indicator ratio) in support of study sam-
ple size. As discussed in this chapter, these rules of thumb are very
crude and usually do not generalize to the researcher’s data set and
model. Thus, sample size requirements should be evaluated in the con-
text of the particular data set and model at hand. As with many of the
topics presented in Chapter 9, the concepts and strategies presented
in this chapter are relevant to SEM models of any type (e.g., CFA,
structural regression models). The book concludes with an overview of
new horizons involving CFA methodology (multilevel factor models,
factor mixture models).

OVERVIEW

In designing a CFA investigation, the researcher must address the critical
question of how many cases (participants) should be collected to obtain an
acceptable level of precision and statistical power of the model’s parameter
estimates, as well as reliable indices of overall model fit. The extant litera-
ture provides little guidance on this issue. Some SEM sourcebooks provide
general rules of thumb based on a small set of Monte Carlo studies. Many
rules of thumb have been offered, including minimum sample size
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(e.g., N ≥ 100 to 200), minimum number of cases per each freed parameter
(e.g., at least 5 to 10 cases per parameter), and minimum number of cases
per indicator in the model (cf. Bentler & Chou, 1987; Boomsma, 1983;
Ding, Velicer, & Harlow, 1995; Tanaka, 1987). Such guidelines are limited
by their poor generalizability to any given research data set. That is, the
models and assumptions used in Monte Carlo studies to provide sample
size guidelines are often dissimilar to the types of models and data used by
the applied researcher. Indeed, requisite sample size depends on a variety
of aspects such as the study design (e.g., cross-sectional vs. longitudinal),
the size of the relationships among the indicators, the reliability of the
indicators, the scaling (e.g., categorical, continuous) and distribution of
the indicators, estimator type (e.g., ML, robust ML, WLSMV), the amount
and patterns of missing data, and the size of the model (model complex-
ity). These features will vary widely from data set to data set. Thus, the
goal of determining required sample size is fostered by the extent to which
the actual model and data can be approximated in the power analysis.

Sample size affects the statistical power and precision of the model’s
parameter estimates. Statistical power is defined as one minus the proba-
bility of Type II error. Based on the work of Cohen (1988, 1992), the cutoff
most frequently used to define acceptable power is .80; that is, an 80%
likelihood of rejecting a false null hypothesis (thus, risk of Type II error is
20%). In SEM and CFA, power pertains to both the test of the model (e.g.,
sensitivity of χ2 to detect model misspecifications) and the model parame-
ter estimates (i.e., probability of detecting a parameter estimate as signifi-
cantly different from zero). The closely related concept of precision per-
tains to the ability of the model’s parameter estimates to capture true
population values; for example, in the population, the correlation between
variables X and Y is .30—do the sample data and model reasonably
approximate this population value? Precision can be gauged in part by the
amount of bias in the parameter estimates and their standard errors. Tradi-
tionally, model-based approaches to determining appropriate sample size
have focused on the issue of statistical power. Some latent software pack-
ages allow researchers to also consider the precision of model estimates.

SATORRA–SARIS METHOD

The most widely known approach for conducting power analysis for
multiple-indicator SEM models was introduced by Satorra and Saris
(1985). This approach focuses on the power of the χ2 difference test to
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detect specification errors associated with a single parameter. The re-
searcher specifies a model associated with a null hypothesis (H0), which is
evaluated in comparison with a model that represents the alternative
hypothesis (H1). In simplest terms, H1 reflects the “true” model (i.e., con-
tains the true population values for all parameters) and H0 is identical to
H1 except for the parameter(s) to be tested. Thus, a population covariance
matrix is generated from the parameter estimates of H1. This covariance
matrix is used as input in the test of H0, which contains the misspecified
parameter and the sample size of interest. In practice, the misspecified
parameter is most often fixed to zero, and thus the analysis focuses on the
power of model χ2 to detect that a parameter is different from zero. The
test of H0 produces a nonzero model χ2 value resulting from the mis-
specified parameter. This value represents a noncentrality parameter (NCP,
often symbolized as λ, but not to be confused with a factor loading) of the
noncentral χ2 distribution. The noncentral χ2 distribution reflects the χ2

distribution when the null hypothesis is false. Using the resulting NCP
value, the power of the test can be determined from tabled values (e.g.,
Saris & Stronkhorst, 1984) or simple routines in commercial software
packages such as SPSS and SAS. Various sample sizes are considered to
identify the required N for power = .80 (α = .05).

To illustrate the logic and procedures of this approach, a simple
example is given. The model (H1) containing the population values of
the various parameters is presented in Figure 10.1. Ideally, these values
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should be based on prior research (e.g., pilot data). The solution of
interest is a two-factor CFA model of Self-Esteem and Depression (mea-
sured by three indicators each). The analysis will focus on the sample
size needed to have adequate power (.80) to detect the factor covariance
of Self-Esteem and Depression (φ21 = .35) as significantly different from
zero (α = .05).

The first step is to generate a population covariance matrix from the
parameter estimates of the H1 model. In this example, standardized values
are used for ease of illustration and interpretation. To accomplish this, a
covariance matrix of null relationships (i.e., zero values in the off-
diagonal, variances on the diagonal) is used as input, and the various
model parameters (i.e., factor loadings, error variances and covariances,
factor covariances) are fixed to equal the conjectured population values.
Of course, this specification will produce a poor fit to the data because all
relationships are null in the input matrix, but it is not the purpose of this
step to obtain goodness-of-fit information. Rather, this analysis will pro-
duce a fitted covariance matrix that can be used as the population covari-
ance matrix in subsequent steps of the procedure.

Table 10.1 provides LISREL syntax for conducting this initial step
using the parameter estimates from Figure 10.1. Again, note that the
covariance matrix (CM) used as input contains zeros in all off-diagonal
elements (i.e., no relationships among the six indicators) and the indicator
variances on the diagonal. There are no freely estimated parameters in this
analysis because all parameters are fixed to population values using the
value (VA) command. A sample size of 500 is specified. In this step, the
size of the sample is arbitrary. In addition, to reduce rounding error, the
analysis should be conducted with a sufficient number of decimal points
(in this case, ND = 4 on the Output line). This syntax produces the follow-
ing fitted covariance matrix that will be used as the population matrix in
the next two steps. Although more time-consuming, this matrix could also
be calculated by hand using the equations presented in Chapter 3; for
example, covariance of X1 and X4 = .65(.35)(.60) = .1365 (cf. Eq. 3.8).

Fitted Covariance Matrix
X1 X2 X3 X4 X5 X6
———— ———— ———— ———— ———— ————

X1 1.0000
X2 0.4550 1.0000
X3 0.4680 0.5040 1.0000
X4 0.1365 0.1470 0.1512 1.0000
X5 0.1592 0.1715 0.1764 0.4200 1.0000
X6 0.1479 0.1592 0.1638 0.3900 0.4550 1.0000
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TABLE 10.1. LISREL Syntax for Satorra–Saris Method of Determining Power to
Detect That Factor Covariance Is Significantly Different from Zero

Step 1: Generate Population Covariance Matrix from H1 Model

TITLE SATORRA-SARIS METHOD OF POWER CALCULATION: STEP ONE
DA NI=6 NO=500 MA=CM
LA
X1 X2 X3 X4 X5 X6
CM
1.0
0.0 1.0
0.0 0.0 1.0
0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 1.0
MO NX=6 NK=2 PH=SY,FI LX=FU,FI TD=SY,FI
LK
ESTEEM DEPRESS
VA .65 LX(1,1)
VA .70 LX(2,1)
VA .72 LX(3,1)
VA .60 LX(4,2)
VA .70 LX(5,2)
VA .65 LX(6,2)
VA .5775 TD(1,1)
VA .51   TD(2,2)
VA .4816 TD(3,3)
VA .64   TD(4,4)
VA .51   TD(5,5)
VA .5775 TD(6,6)
VA 1.0 PH(1,1) PH(2,2)
VA .35 PH(2,1)
OU ME=ML RS AD=OFF IT=100 ND=4

Step 2: Analyze Residual Covariance Matrix to Ensure That Population Values Are Recovered

TITLE SATORRA-SARIS METHOD OF POWER CALCULATION: STEP TWO
DA NI=6 NO=500 MA=CM
LA
X1 X2 X3 X4 X5 X6
CM
1.0000
0.4550  1.0000
0.4680  0.5040  1.0000
0.1365  0.1470  0.1512  1.0000
0.1592  0.1715  0.1764  0.4200  1.0000
0.1479  0.1592  0.1638  0.3900  0.4550  1.0000
MO NX=6 NK=2 PH=SY,FR LX=FU,FR TD=DI
LK
ESTEEM DEPRESS

(cont.)
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TABLE 10.1. (cont.)

PA LX
1 0
1 0
1 0
0 1
0 1
0 1
PA PH
0
1 0
VA 1.0 PH(1,1) PH(2,2)
OU ME=ML RS AD=OFF IT=100 ND=4

Step 3: Fit H0 Model That Contains the Misspecified Parameter
(i.e., factor covariance fixed to zero) and Target Sample Size (e.g., N = 100)

TITLE SATORRA-SARIS METHOD OF POWER CALCULATION: STEP THREE
DA NI=6 NO=100 MA=CM              ! SPECIFY SAMPLE SIZE OF INTEREST
LA
X1 X2 X3 X4 X5 X6
CM
1.0000
0.4550  1.0000
0.4680  0.5040  1.0000
0.1365  0.1470  0.1512  1.0000
0.1592  0.1715  0.1764  0.4200  1.0000
0.1479  0.1592  0.1638  0.3900  0.4550  1.0000
MO NX=6 NK=2 PH=SY,FR LX=FU,FR TD=DI
LK
ESTEEM DEPRESS
PA LX
1 0
1 0
1 0
0 1
0 1
0 1
PA PH
0
0 0                               ! FACTOR COVARIANCE FIXED TO ZERO
VA 1.0 PH(1,1) PH(2,2)
OU ME=ML RS MI SC AD=OFF IT=100 ND=4

Step 4: Use χ2 from Step 3 as Noncentrality Parameter
to Estimate Power at Targeted Sample Sizes (e.g., N = 100)

SAS Syntax:

DATA POWER;
DF=1; CRIT = 3.841459;
LAMBDA = 6.3724;
POWER = (1-(PROBCHI(CRIT,DF,LAMBDA)));
RUN; (cont.)



The second step is simply an accuracy check. The H1 model is freely
estimated using the fitted covariance matrix from the first step as input
data (see Table 10.1). If the first two steps are conducted properly, this
analysis will fit the data perfectly and the parameter estimates will be iden-
tical within rounding error to the original population values (e.g., λ11 =
.65, φ21 = .35).

In the third step, the prior analysis is repeated except for two key
alterations. First, the parameter of interest is misspecified. In this step, the
null hypothesis is specified. Specifically, we are interested in determining
the power to detect that the factor correlation of Self-Esteem and Depres-
sion is significantly different from zero. Thus, this parameter should be
fixed to zero in this analysis (see PA PH commands in Table 10.1). Second,
the sample size (N) for which power is desired must be specified. In Table
10.1, N is specified as 100. Therefore, the current analysis will estimate the
power to detect a factor covariance of .35 as statistically significant when
N = 100.

This analysis produces a model χ2 value of 6.3724 [remember that
Mplus users will obtain a slightly different χ2 value because χ2 is calculated
as FML(N) instead of the more widely used FML(N – 1)]. Because all other
aspects of the solution are properly specified, this nonzero χ2 value is due to
the misspecification of the factor covariance parameter. As noted earlier, this
χ2 value is the noncentrality parameter (NCP, λ) of the noncentral χ2 distri-
bution; that is, distribution of χ2 when the null hypothesis is false.

In the fourth step, the χ2 value from the preceding analysis
(e.g., 6.3724) is used as the NCP to calculate the power to detect the
model misspecification. Although tabled values are available (e.g., Saris &
Stronkhorst, 1984), this step can be performed using simple routines in
commercial software packages. These routines require three pieces of
information: the NCP, degrees of freedom (df), and the critical χ2 value.
Because this particular power analysis focuses on a single parameter, df is 1
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TABLE 10.1. (cont.)

SPSS Syntax:

DATA LIST FREE /X DF NCP.
COMPUTE POWER = 1 - NCDF.CHISQ(X,DF,NCP).
BEGIN DATA.
3.841459 1 6.3724
END DATA.
LIST POWER.



(i.e., this df should not be confused with the df of the H1 or H0 model) and
the critical χ2 value will be 3.84 (i.e., when α is set at .05). In Table 10.1,
the critical χ2 value is written out to six decimal points to reduce rounding
error. Table 10.1 provides SAS and SPSS syntax for these routines.

The analysis yields a power value of .714. Thus, when N = 100, there
is a 71.4% likelihood of rejecting a false null hypothesis (i.e., detecting the
factor covariance of Self-Esteem and Depression as significantly different
from zero at the .05 alpha level). Because .714 is below conventional cut-
offs (i.e., power = .80), the results indicate that sample size should be
larger to obtain adequate statistical power. NCPs (χ2) for other sample
sizes can be calculated in a few ways (all produce identical results). The
Step 3 analysis could be re-run, changing the N of 100 to a larger value.
Alternatively, most programs (e.g., LISREL) provide the minimized fit
function value (FML), which can be used to calculate χ2 at various sample
sizes; that is, χ2 = FML(N – 1). In programs that do not provide this value,
FML can be readily computed as χ2 / (N – 1). The NCPs for other sample
sizes are then used as input in the power calculations (e.g., SAS or SPSS
routine presented in Table 10.1).

In the current example, increasing sample size to 125 produces an
NCP value of 7.9816. Using this NCP in the SAS or SPSS routine produces
a power estimate of .807. Thus, an N = 125 appears more suitable in terms
of the power to detect the factor covariance as statistically different from
zero. For the reader’s information, NCPs and power estimates for a few
other sample sizes are as follows:

N NCP Power
100 6.3724 .713
125 7.9816 .807
150 9.5908 .872
200 12.8091 .947

The Satorra–Saris (1985) method is superior to general rules of
thumb (e.g., ratio of cases to freed parameters) because it is a model-based,
quantitative approach to determining requisite sample size. However, this
approach has several disadvantages. As noted by Kaplan (1995), the
method requires that the researcher specify the alternative value(s) to be
tested (e.g., φ21 = .35). Satorra (1989) later demonstrated that modification
indices can be used as approximate NCP values for each restriction (e.g.,
fixed parameter) in the model (recall the relationship of the modification
index and χ2 at df = 1, Chapter 5). Thus, alternative values for the parame-
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ters of interest do not need to be specified, but instead the modification
indices are used as NCP values to determine the power to detect mis-
specification of the restricted parameter. In addition, the aforementioned
approach focuses on a single parameter at a time. Although Saris and
Satorra (1993) subsequently developed a procedure for assessing power
for multiple simultaneous mis-specifications (“isopower contours”), these
procedures are not readily implemented in current latent variable software
packages.

Some have criticized model-based approaches to power analysis
because the procedures require the researcher to make exact estimates of
population values for each parameter in the model. For instance, although
the prior example focused on the factor covariance, all the factor loadings,
factor variances, and indicator residuals had to be properly specified. This
is often difficult to carry out in practice. A few misestimates of the parame-
ter population values may undermine the power analysis. Accordingly,
some methodologists (e.g., Jaccard & Wan, 1996) have suggested that
OLS-based power analysis (e.g., Cohen, 1988) may be useful to determine
power/requisite sample size for salient structural parameters of the model
(i.e., effects involving relationships among latent variables). Bootstrapping
(e.g., Bollen & Stine, 1993; see also Chapter 9) has been proposed as
another approach to power analysis, although this method has limited util-
ity in research planning (e.g., determining target N) because it requires a
sufficiently large existing data set to generate “bootstrapped” samples (for
an overview of bootstrapping as a power analysis procedure, see Jaccard &
Wan, 1996).

MONTE CARLO APPROACH

In addition to the aforementioned drawbacks, the Satorra–Saris and OLS
methods are limited by the fact that they do not address the precision of
the model parameter estimates or directly take into account other salient
aspects of the research data, such as degree of non-normality, type of indi-
cators (e.g., binary, continuous), and the amount and patterns of missing
data. Recent developments in latent variable software packages permit
researchers to use the Monte Carlo methodology to determine the power
and precision of model parameters in context of a given model, sample
size, and data set. Typically, Monte Carlo studies are used in SEM research
to study the behavior of statistical estimators and test statistics under vari-
ous conditions manipulated by the researcher, such as sample size, degree
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of model misspecification, and degree of data non-normality (cf. Paxton,
Curran, Bollen, Kirby, & Chen, 2001). However, Muthén and Muthén
(2002) have shown how the Monte Carlo method can be conveniently
used to determine sample size and power in the design of SEM studies.

As in the Satorra–Saris (1985) approach, the Monte Carlo method
requires specification of an H1 model containing the population values of
all parameters (e.g., Figure 10.1). Ideally, these values should be guided by
existing data (e.g., pilot studies). Numerous samples are randomly gener-
ated on the basis of the population values of the model. Appendix 10.1
provides an illustration of the data generation process used in Monte Carlo
research (for further details, the reader is referred to Mooney, 1997, Fan &
Fan, 2005, and Muthén & Muthén, 1998–2004). In the absence of addi-
tional programming, the data sets generated by the Monte Carlo utility will
consist of normally distributed, continuous data (with no missing data).
However, programs such as Mplus and EQS offer programming features to
produce the desired amount of non-normality and missing data, as well as
the capability of estimating in the context of noncontinuous indicators
(and categorical estimators such as WLSMV; see Chapter 9).1 The speci-
fied SEM model is estimated in each sample, and the results of these analy-
ses (e.g., parameter values, standard errors, fit statistics) are averaged
across the samples. These averages are used to determine the precision
(e.g., bias and coverage) and power of the estimates (i.e., proportion of
samples in which the parameter is significantly different from zero). As in
the Satorra–Saris approach, various sample sizes are studied to determine
the N needed to obtain parameter estimates with sufficient power and pre-
cision.

The CFA model in Figure 10.1 is used to illustrate this approach. This
CFA model is first examined under the condition of normally distributed
indicators without missing data (for examples of Monte Carlo evaluations
with non-normal indicators, see Muthén & Muthén, 2002). As in the
Satorra–Saris example, the initial analysis focuses on the suitability of a
sample size of 100. Mplus syntax for this analysis is presented in Table
10.2. The MONTECARLO command describes the details of the Monte
Carlo study, such as the number and names of indicators (X1–X6) and the
sample size (NOBSERVATIONS = 100) used for data generation and analy-
sis. The NREPS statement specifies how many samples (replications) are to
be generated from the parameters of the population model. This number
can be regarded as the sample size of the Monte Carlo study. Current com-
puter technology (e.g., fast CPU speeds) allows the user to specify a large
number of replications (10,000, in this example) to ensure the stability of
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the simulation results (e.g., average of parameter estimates across replica-
tions). The SEED statement specifies the starting point used for the ran-
dom draws from the population. Muthén and Muthén (2002) recommend
the use of multiple seeds to verify the consistency of results across differ-
ent seed values.

The MODEL POPULATION command describes the data generation
model for the Monte Carlo study. On this command, the true population
parameter values used for data generation are provided. In the current
example, the parameter values listed in Figure 10.1 are specified as popu-
lation values (and factor variances of Self-Esteem and Depression are fixed
to 1.0). The MODEL command is used to indicate the analysis model (i.e.,
the CFA). In some applications, the analysis model will be different from
the data generation model; for example, the data are generated as categori-
cal, but analyzed as continuous to study the impact on various statistical
estimators. In the typical power analysis, the MODEL command will be
identical to the data generation model (MODEL POPULATION). Accord-
ingly, these commands are used to provide both population values and
starting values in the estimation of the model (for computing coverage,
described below). In this example, ML is specified as the statistical estima-
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TABLE 10.2. Mplus Syntax for Monte Carlo Approach to Determining Power and
Precision of CFA Model Parameter Estimates (Normal and No Missing Data, N = 100)

TITLE: CFA TWO-FACTOR, NORMAL DATA, NO MISSING
MONTECARLO:

NAMES ARE X1-X6;
NOBSERVATIONS = 100; ! SAMPLE SIZE OF INTEREST
NREPS = 10000;
SEED = 53567;

MODEL POPULATION:
ESTEEM BY X1*.65 X2*.70 X3*.72;
DEPRESS BY X4*.60 X5*.70 X6*.65;
ESTEEM@1; DEPRESS@1;
X1*.5775; X2*.51; X3*.4816; X4*.64; X5*.51; X6*.5775;
ESTEEM WITH DEPRESS*.35;

MODEL:
ESTEEM BY X1*.65 X2*.70 X3*.72;
DEPRESS BY X4*.60 X5*.70 X6*.65;
ESTEEM@1; DEPRESS@1;
X1*.5775; X2*.51; X3*.4816; X4*.64; X5*.51; X6*.5775;
ESTEEM WITH DEPRESS*.35;

ANALYSIS: ESTIMATOR = ML;
OUTPUT: TECH9;



tor on the ANALYSIS command. TECH9 is requested on the OUTPUT line
to obtain any errors that are encountered in regard to the convergence of
each Monte Carlo replication.

Selected output of the analysis is presented in Table 10.3. Muthén and
Muthén (2002) forwarded the following criteria for determining sample
size: (1) bias of the parameters and their standard errors do not exceed
10% for any parameter in the model; (2) for parameters that are the spe-
cific focus of the power analysis (e.g., the factor covariance of Self-Esteem
and Depression), bias of their standard errors does not exceed 5%; and (3)
coverage is between .91 and .98. In addition to these criteria, appropriate
sample size is determined when the power of salient model parameters is
.80 or above (cf. Cohen, 1988). In order (by column), the Mplus summary
of the analysis provides the true population value for each parameter (Pop-
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TABLE 10.3. Selected Mplus Output for Monte Carlo Approach to Determining Power
and Precision of CFA Model Parameter Estimates (Normal and No Missing Data,
N = 100)

MODEL RESULTS

ESTIMATES S. E. M. S. E. 95% % Sig
Population Average Std. Dev. Average Cover Coeff

ESTEEM   BY
X1 0.650 0.6439 0.1100 0.1067 0.0121 0.941 1.000
X2 0.700 0.6955 0.1127 0.1077 0.0127 0.938 1.000
X3 0.720 0.7154 0.1129 0.1081 0.0128 0.939 1.000

DEPRESS   BY
X4 0.600 0.5949 0.1189 0.1134 0.0142 0.936 0.999
X5 0.700 0.6953 0.1223 0.1178 0.0150 0.944 0.999
X6 0.650 0.6468 0.1199 0.1154 0.0144 0.939 0.999

ESTEEM   WITH
DEPRESS 0.350 0.3495 0.1334 0.1247 0.0178 0.928 0.761

Variances
ESTEEM 1.000 1.0000 0.0000 0.0000 0.0000 1.000 0.000
DEPRESS 1.000 1.0000 0.0000 0.0000 0.0000 1.000 0.000

Residual Variances
X1 0.577 0.5628 0.1165 0.1127 0.0138 0.936 0.995
X2 0.510 0.4926 0.1195 0.1156 0.0146 0.946 0.972
X3 0.482 0.4625 0.1232 0.1178 0.0155 0.945 0.946
X4 0.640 0.6209 0.1302 0.1231 0.0173 0.937 0.994
X5 0.510 0.4893 0.1442 0.1353 0.0212 0.957 0.915
X6 0.577 0.5567 0.1330 0.1275 0.0181 0.943 0.969



ulation), the average of the parameter estimates across replications (Aver-
age), the standard deviation of the parameter estimates across replications
(Std. Dev.), the average of the standard errors across replications (S.E.
Average), the mean square error of each parameter (M.S.E., calculated as
the variance of the estimate across replications plus the square of the bias),
95% coverage (95% Cover, the proportion of replications for which the
95% confidence interval contains the true population parameter value),
and the proportion of replications in which the parameter is significantly
different from zero at the .05 alpha level (% Sig Coeff).

The percentage of parameter bias can be calculated by subtracting the
population parameter value from the average parameter value, dividing
this difference by the population value, and then multiplying the result by
100. For example, using the results in Table 10.3, the percent bias of the
factor covariance parameter is

Bias(φ21) = [(.3495 – .35) / .35 ](100) = –.14% (10.1)

The bias of this estimate is less than a percentage point, which is negligi-
ble. Indeed, bias is well below 10% for each parameter in the model, which
satisfies the first criterion.

Bias in the standard errors of parameters is calculated in a similar
fashion. Muthén and Muthén (2002) indicate that the standard deviation
of the parameter estimate over replications can be treated as the popula-
tion standard error when the number of replications is large (as in the cur-
rent example, NREPS = 10,000). The percentage of standard error bias is
calculated by subtracting the average of the estimated standard errors
across replications (S.E. Average) from the standard deviation of the
parameter estimate (Std. Dev.), dividing this difference by the standard
deviation of the parameter estimate (Std. Dev.), and multiplying the result
by 100. Again using the factor covariance (Table 10.3), the calculation is:

SE Bias(φ21) = [(.1247 – .1334) / .1334](100) = –6.52%
(10.2)

Because this parameter is a focus of the power analysis, the bias would
exceed the guideline provided by Muthén and Muthén (2002) of 5%, sug-
gesting that the N = 100 may not be sufficient to obtain precise parameter
estimates. Although coverage values are satisfactory (except for the fixed
estimates, all are close to the correct value of .95), further evidence against
the suitability of an N = 100 is provided by the proportion of replications
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for which the factor covariance parameter is significantly different from
zero (% Sig Coeff = .761; Table 10.3). Specifically, the value of .761 indi-
cates that the factor covariance of Self-Esteem and Depression was statisti-
cally significant (α = .05) in 76.1% of the replications. Note that this result
is close to the theoretical value of .714 obtained previously in the
Satorra–Saris approach. This can be regarded as the power estimate of this
parameter; that is, the probability of rejecting the null hypothesis when it
is false. Alternatively, if a parameter’s population value was specified to be
0.0, this would provide an estimate of Type I error—the likelihood of
rejecting a true null hypothesis.

The analysis would proceed by examining larger sample sizes (and
other seed values, to ensure stability once a suitable N has been tentatively
identified). This is accomplished by changing the number of observations
in the syntax provided in Table 10.2. Table 10.4 provides selected results
for a Monte Carlo analysis conducted with a sample size of 125. Consis-
tent with the results of the Satorra–Saris method, this analysis suggests
that an N = 125 has sufficient power (.836) to reject a false null hypothesis
in regard to the factor covariance. However, the results indicate that the
standard error of this estimate continues to be somewhat biased (–5.95%;
cf. Muthén & Muthén, 2002, guidelines), suggesting that a sample size
larger than 125 may be warranted (although this conclusion would be bol-
stered by re-running the Monte Carlo analyses with different seed values).

Beginning with version 3.0, Mplus summarizes data pertaining to the
behavior of selected fit indices (e.g., χ2, RMSEA, SRMR) for a target model,
data, and sample size. In Table 10.4, the mean and standard deviation of
model χ2 across the 10,000 replications of the Monte Carlo analysis is pro-
vided. The Proportions Expected and Percentiles Expected columns con-
vey aspects of the χ2 distribution. For instance, with a Proportions
Expected value of .05 (third row from the bottom), there is a 5% probabil-
ity of obtaining a χ2 value that exceeds the Percentiles Expected value of
15.507 at df = 8 (the df of the model presented in Figure 10.1 and analyzed
in this Monte Carlo study). In other words, the value of 15.507 is the criti-
cal value of χ2 at df = 8, α = .05 (i.e., the same information could be
obtained from tabled values of the χ2 distribution in an appendix of a sta-
tistics textbook). However, the Proportions Observed and Percentiles
Expected provide the values obtained in the Monte Carlo replications; for
example, in the preceding example, the proportion of replications for
which the critical value was exceeded is .058. The Percentiles Observed
value of 15.937 is the χ2 at this percentile from the Monte Carlo analysis
that has 5% of the values in replications above it. Because it is very close to
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TABLE 10.4. Selected Mplus Output for Monte Carlo Approach to Determining Power
and Precision of CFA Model Parameter Estimates (Normal and No Missing Data, N = 125)

MODEL RESULTS
ESTIMATES S. E. M. S. E. 95% % Sig

Population Average Std. Dev. Average Cover Coeff
ESTEEM B
X1 0.650 0.6445 0.0971 0.0955 0.0095 0.944 1.000
X2 0.700 0.6968 0.0996 0.0963 0.0099 0.940 1.000
X3 0.720 0.7155 0.0998 0.0966 0.0100 0.941 1.000

DEPRESS BY
X4 0.600 0.5959 0.1053 0.1013 0.0111 0.939 1.000
X5 0.700 0.6966 0.1089 0.1051 0.0119 0.944 1.000
X6 0.650 0.6476 0.1049 0.1030 0.0110 0.946 1.000

ESTEEM WITH
DEPRESS 0.350 0.3491 0.1194 0.1123 0.0143 0.929 0.836

Variances
ESTEEM 1.000 1.0000 0.0000 0.0000 0.0000 1.000 0.000
DEPRESS 1.000 1.0000 0.0000 0.0000 0.0000 1.000 0.000

Residual Variances
X1 0.577 0.5657 0.1030 0.1007 0.0107 0.944 0.998
X2 0.510 0.4957 0.1050 0.1032 0.0112 0.947 0.989
X3 0.482 0.4678 0.1071 0.1047 0.0117 0.949 0.976
X4 0.640 0.6252 0.1138 0.1095 0.0132 0.936 0.997
X5 0.510 0.4928 0.1309 0.1202 0.0174 0.954 0.949
X6 0.577 0.5613 0.1156 0.1132 0.0136 0.947 0.989

TESTS OF MODEL FIT

Number of Free Parameters 13

Chi-Square Test of Model Fit

Degrees of freedom 8

Mean 8.213
Std Dev 4.084
Number of successful computations 9998

Proportions Percentiles
Expected Observed Expected Observed

0.990 0.991 1.646 1.844
0.980 0.983 2.032 2.138
0.950 0.958 2.733 2.844
0.900 0.909 3.490 3.583
0.800 0.814 4.594 4.725
0.700 0.718 5.527 5.695
0.500 0.522 7.344 7.509
0.300 0.316 9.524 9.746
0.200 0.218 11.030 11.344
0.100 0.109 13.362 13.633
0.050 0.058 15.507 15.937
0.020 0.023 18.168 18.619
0.010 0.012 20.090 20.405



the theoretical value of 15.507 (in tandem with the similarity of the
observed and expected proportions values, .058 vs. .05), this supports the
notion that the χ2 distribution was well approximated in this instance
(e.g., N = 125); that is, bias of less than 3%. Similarly, the average χ2 across
replications (8.213) is roughly the same as the model df (8); the variance
of χ2 across replications (4.0842 = 16.68) is near the value of 2df (16). This
also provides evidence that the χ2 distribution was approximated.

Mplus has extensive Monte Carlo facilities beyond those illustrated in
the prior example. For instance, a variety of data types (e.g., categorical,
non-normal continuous, clustered) and models (e.g., multiple groups,
mixtures, multilevel) can be studied in this framework. In addition, the
Monte Carlo routine has several other useful features, such as the option
to save all or a portion of the generated data sets and the ability to import
estimates from an analysis of real data as population or coverage values in
the Monte Carlo study. Another important feature is the ability to deter-
mine sample size and power in the context of missing data (see also Dolan,
der Sluis, & Grasman, 2005). As noted in Chapter 9, missing data is a real-
ity in most applied research (especially in longitudinal designs). In addi-
tion, missing data can be planned as part of the research design (e.g., as in
the cohort sequential design to study life span developmental processes in
a more compressed time frame). However, the effects of missing data are
rarely considered in power analysis.

Table 10.5 presents Mplus syntax for a study with planned missing-
ness in which half of the sample is administered all six indicators, a quar-
ter is administered the Depression indicators only, and the remaining quar-
ter is administered the Self-Esteem indicators only (based on the model
presented in Figure 10.1). In the MONTECARLO command, the PATMISS
option is used to specify the missing data patterns and the proportion
missing for each indicator. In the Table 10.5 example, there are three miss-
ing data patterns (the patterns are separated by “|”). In the first pattern, all
six indicators are present for all cases (the numbers in parentheses indicate
the proportion of data missing for a given indicator; in this pattern, all pro-
portions are 0). In the second pattern, all of the Self-Esteem indicators are
missing (indicated by the value “1” in parentheses following the X1, X2,
and X3 indicators—100% missing), and all of the Depression indicators
are present. In the third pattern, the Depression indicators are missing,
and the Self-Esteem indicators are present. The PATPROBS statement spec-
ifies the proportion of cases with each missing data pattern. In the current
example, 50% of cases have data for all six indicators, 25% of data for
Depression indicators only (X4–X6), and 25% have data for Self-Esteem
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indicators only (X1–X3). The proportions in this statement must sum to
one. The only other addition to the Mplus syntax is the “TYPE =
MISSING” option on the ANALYSIS command (see Table 10.5), which
specifies use of the full information ML estimator (cf. Allison, 2003) to
accommodate missing data.

This example is based on a cross-sectional analysis in which some
data are missing by design (e.g., due to practical or financial constraints
that preclude administration of a test battery to the full sample). More
often, data are lost owing to participant attrition, incomplete responding,
noncompliance, and so on. For example, if the researcher is interested in
evaluating the temporal stability of a latent construct (defined by three
indicators, A, B, and C), he or she might specify the following pattern of
missingness for a two-wave study (in which a quarter of the sample is
expected to be lost at the second testing occasion):
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TABLE 10.5. Mplus Syntax for Monte Carlo Approach to Determining Power
and Precision of CFA Model Parameter Estimates (Normal and Planned Missing Data,
N = 200)

TITLE: CFA TWO-FACTOR, NORMAL DATA, PLANNED MISSING
MONTECARLO:

NAMES ARE X1-X6;
NOBSERVATIONS = 200;
NREPS = 10000;
SEED = 53567;
PATMISS = X1 (0) X2 (0) X3 (0) X4 (0) X5 (0) X6 (0) |

X1 (1) X2 (1) X3 (1) X4 (0) X5 (0) X6 (0) |
X1 (0) X2 (0) X3 (0) X4 (1) X5 (1) X6 (1);

PATPROB = .5 | .25 | .25;
ANALYSIS: TYPE = MISSING;

ESTIMATOR = ML;
MODEL POPULATION:

ESTEEM BY X1*.65 X2*.70 X3*.72;
DEPRESS BY X4*.60 X5*.70 X6*.65;
ESTEEM@1; DEPRESS@1;
X1*.5775; X2*.51; X3*.4816; X4*.64; X5*.51; X6*.5775;
ESTEEM WITH DEPRESS*.35;

MODEL:
ESTEEM BY X1*.65 X2*.70 X3*.72;
DEPRESS BY X4*.60 X5*.70 X6*.65;
ESTEEM@1; DEPRESS@1;
X1*.5775; X2*.51; X3*.4816; X4*.64; X5*.51; X6*.5775;
ESTEEM WITH DEPRESS*.35;

OUTPUT: TECH9;



PATMISS = A1 (0) B1 (0) C1 (0) A2 (.25) B2 (.25) C2 (.25);
PATPROB = 1;

In fact, the A1, B1, and C1 indicators could be omitted from the PATMISS
statement, because indicators omitted from this statement are assumed to
have no missing data by Mplus default. Ideally, the specification of 25% at
the Time 2 assessment would be evidence based (e.g., pilot data, extant lit-
erature). Unlike the prior example, this example has a single pattern of
missing data (all cases have complete data at Time 1, 25% of the sample is
lost at Time 2). Accordingly, the probability of this missing pattern is spec-
ified as 1.0 (PATPROB = 1).

SUMMARY AND FUTURE DIRECTIONS IN CFA

This book draws to a close on the important, yet often overlooked, topic of
sample size determination in planning a CFA investigation. As this chapter
has shown, current latent variable software programs provide elegant
methods of determining the sample size required for obtaining adequate
statistical power and sufficient precision of parameter estimates. Two pro-
cedures were described in detail: the Satorra–Saris method and the Monte
Carlo approach. It is hoped that these illustrations have convinced readers
not to rely on general rules of thumb that seem to persist in the applied
research literature (e.g., minimum sample size). Rather, sample size and
power determinations should be based on models and data that mirror the
actual empirical context. Recent innovations in software packages allow
the researcher to also consider the impact of other common real-world
complications (e.g., non-normality, missing data) on sample size and
power.

A theme echoed in this and all preceding chapters is that methodolog-
ical developments in CFA and SEM have advanced rapidly in recent years.
The aim of this book has been to provide a practical discussion and guide
to CFA, including the very latest developments in these methods most ger-
mane to the applied researcher (e.g., IRT models, Monte Carlo study). In
closing, it seems appropriate to mention two additional CFA modeling
possibilities that have developed rapidly during the course of writing this
book: factor mixture models and multilevel factor models. In addition to
their infancy, the reason that these models are not discussed in detail here
is that, while closely related to CFA, they could be viewed as falling more
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within the realm of SEM. However, readers should be aware of these
emerging latent variable methodologies.

Factor mixture models are a combination of latent class models (cf.
Lazarsfeld & Henry, 1968) and common factor models (e.g., CFA). Latent
class models are used to explore unobserved population heterogeneity. The
sources of population heterogeneity can be known or unobserved. For
instance, in Chapter 7, multiple-groups CFA was described as a method of
examining group differences on the parameters of a measurement model
(e.g., gender may be a source of heterogeneity in the measurement model).
In this case, heterogeneity is observed because it is possible to define
subpopulations based on an observed variable (e.g., gender). Unobserved
heterogeneity exists when it is not possible to identify the sources of heter-
ogeneity beforehand; that is, the sample may be heterogeneous because it
is comprised of cases that belong to different subpopulations, but it is not
possible to identify these subgroups a priori. Factor mixture models can be
conducted to identify salient latent classes; that is, homogeneous clusters
with a heterogeneous sample. The term “latent class” is used because
subpopulation membership is not observed but must be inferred from the
data. Unlike all other latent variable models discussed in this book, the
latent variable in the latent class model is categorical, and the number of
categories (i.e., latent classes) reflects the number of classes in the sample.
These classes may differ qualitatively or quantitatively. For example, using
the Figure 10.1 model, a factor mixture model might identify three classes:
an “unaffected” class (i.e., cases with high self-esteem, and no depression),
a so-called “vulnerability” class (i.e., cases with no depression but with
low self-esteem), and a “disordered” class (i.e., cases with depression and
low self-esteem). Various aspects of the model results (e.g., goodness-of-fit
statistics such as the Bayesian information criterion, BIC, and interpret-
ability/quality of classification and posterior probabilities) are used to eval-
uate the factor mixture model. After an appropriate number of classes are
identified (keeping substantive issues firmly in mind), the estimates (pos-
terior class probabilities) of the factor mixture model can be used to divide
the sample into subpopulations (e.g., Case #1 is a member of the unaf-
fected class). Covariates and distal outcomes can be brought into the anal-
ysis in effort to validate the factor mixture model. For instance, an
observed background variable (e.g., family history of depression) might be
strongly predictive of class membership. These models may be more infor-
mative and interpretable than a single-group model that simply regresses
the latent factors on a background variable (e.g., the background variable
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may be differentially predictive of classes). At this writing, Mplus is the
only software program available for fitting factor mixture models. For fur-
ther information on this emerging methodology, the reader is referred to
Lubke and Muthén (2005).

Another relatively new methodology is the multilevel factor model.
Although multilevel models have been around for years (cf. hierarchical
linear models; Raudenbush & Bryk, 2002), only recently has this method-
ology merged with CFA factor models in a manner readily accessible to
applied researchers. Multilevel models should be employed when data
have been obtained by cluster or unequal probability sampling. In these
instances, the data are said to have a hierarchical or nested structure (in
this context, the term “hierarchical” should not be confused with higher-
order factor analysis, Chapter 8). For example, consider a study of grade
school scholastic achievement where the student data have been collected
statewide. The data have a multilevel hierarchical structure; that is, stu-
dents are nested within classrooms, classrooms are nested within schools,
and schools are nested within school districts. Other common examples of
clustered data structures are family data (i.e., cases nested within families)
and repeated measures data (i.e., cases nested by time). The observations
may not be independent within clusters. For example, one would not
employ an independent sample t-test to compare the means of a sample
assessed at two time points, because the observations are not independent.
In cross-sectional data, the observations also may not be independent
because of the clustered data structure. For instance, the scholastic
achievement of students within a given classroom of a given school may be
homogeneous because students share the same teacher and classroom
dynamics and come from similar family/socioeconomic backgrounds. In
data sets of this nature, multilevel modeling is employed to avoid biases in
parameter estimates, standard errors, and tests of model fit. In other
words, if the hierarchical structure is ignored, so is the non-independence
of observations. Consequently, for example, the standard errors of parame-
ter estimates may be underestimated, resulting in positively biased statisti-
cal significance testing.

Moreover, the multilevel model can be estimated to learn more about
within- and between-cluster relationships. Multilevel models are also
referred to as random coefficient models. Random coefficients are parame-
ters in a model that vary across clusters. Covariates can be included in the
multilevel model to account for variability between and within clusters.
Using the example of scholastic achievement, a multilevel regression

Statistical Power and Sample Size 431



model might find that gender of student is a significant predictor of read-
ing achievement; that is, that girls are better at reading than boys. In this
example, this is a within-level effect (also referred to as a Level 1 effect);
that is, the gender covariate accounts for variation in reading achievement
among individuals. However, the multilevel analysis reveals that the effect
varies across classrooms (i.e., a between-cluster or Level 2 effect). Thus,
the Gender → Reading Achievement effect is a random slope (the slope var-
ies across classrooms). Covariates can be brought into the model to
explain the variability of this coefficient across clusters (classrooms). For
instance, it may be found that the level of teacher training/experience
(a cluster-level covariate) is inversely related to this random slope (a
between-level effect); that is, the effect of gender on reading decreases as
teacher experience increases. This cross-level interaction might be inter-
preted substantively as indicating that girls do better at reading than boys
because, in the classroom, boys are less attentive, more recalcitrant, and so
forth (the within-level effect). However, experienced teachers are more
adept at implementing strategies to direct boys’ attention to classroom
learning (the cross-level interaction). As noted earlier, this two-level analy-
sis could be expanded to incorporate additional levels of the data structure
(e.g., classrooms within schools, schools within school districts).

Multilevel models can now be employed to analyze within- and
between-cluster latent factors. In fact, the number of factors can differ at
the within and between levels. Indeed, early evidence in applied data sets
suggests fewer factors are obtained at the between level owing to lack of
variability across clusters. As in the single indicator example described in
the preceding paragraph, covariates can be brought into the model to
explain variability within and between clusters. Any parameter of the CFA
solution (e.g., a factor loading) can be treated as a random coefficient, if
justified on substantive and empirical grounds. Most latent variable soft-
ware programs (e.g., Mplus, EQS, LISREL) now have multilevel factor
modeling capabilities. Examples of this methodology are still rather sparse
in the applied literature, but illustrations can be found in Muthén (1991),
Kaplan and Kreisman (2000), Heck (2001), and Dyer, Hanges, and Hall
(2005).

Factor mixture models and multilevel factor models offer exciting
new modeling possibilities to the researcher working within the realm of
CFA and SEM. These developments perpetuate the hallmarks of CFA/SEM
as an exceptionally versatile analytic framework for addressing a wide
array of questions in the social and behavioral sciences.
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NOTE

1. However, no current program can generate data with the desired amount
of multivariate non-normality. For instance, the Mplus program uses a mixture
modeling approach to generate non-normal data; that is, by varying the amount of
overlap of the normal distributions of two subpopulations and then combining the
data, the desired marginal skewness and kurtosis is obtained on a trial-and-error
basis. Nonetheless, the procedures in Mplus and other programs with extensive
data generation facilities (e.g., EQS) do not address joint skewness and kurtosis
(multivariate non-normality), distribution shape, and so forth. For more informa-
tion on these issues and their impact on power analyses based on simulations, see
Yuan and Hayashi (2003).
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Appendix 10.1

Monte Carlo Simulation in Greater Depth:
Data Generation

As noted in this chapter, the Monte Carlo approach to power analysis involves
several steps. First, the hypothesized model is established, which contains the
population values of the model parameters (see Figure 10.1). Population val-
ues are often derived from the research literature and pilot studies. Second,
multiple random samples are generated from the population values of the
hypothesized model, based on the conditions specified by the researcher (e.g.,
sample size, patterns/amount of missing data). The model is then analyzed in
each sample and the results are averaged across all simulated data sets. The
averaged results provide information about the precision and statistical power
of the model; for example, the proportion of replications for which a given
parameter is statistically significant indicates the power of the estimate under
the specified conditions (e.g., N). Although the rationale of this procedure is
relatively straightforward, perhaps the most mysterious aspect of the Monte
Carlo approach is how samples are generated from the population values of
the model. There are various ways data can be simulated. To foster the reader’s
understanding of this process, a matrix decomposition procedure (Kaiser &
Dickman, 1962) is illustrated using the Figure 10.1 model. To avoid undue
complexity, only the indicators of the Self-Esteem factor (X1, X2, X3) will be
used, under the assumptions of multivariate normality and no missing data. A
more extensive illustration of this approach under other conditions (e.g., non-
normality) can be found in Fan and Fan (2005).

Step 1. Calculate correlation matrix (R) from the population values of the
hypothesized model.

Because the values in Figure 10.1 are completely standardized, it is
straightforward to compute correlations among the X1, X2, and X3 indicators
using basic equations presented in earlier chapters, for example, population r
of X1,X2 = .65(.70) = .455 (cf. Eq. 3.7, Chapter 3). Thus, the population cor-
relation matrix for these three indicators is as follows:

X1 X2 X3
X1 1.000
X2 .455 1.000
X3 .468 .504 1.000
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Step 2. Obtain a factor pattern matrix (F) by conducting a principal compo-
nents analysis (PCA) on the population correlation matrix (R), where the
requested number of components equals the number of indicators.

Because the number of components is the same as the number of indica-
tors, the input correlation matrix is reproduced perfectly. SAS PROC FACTOR
syntax for this step is provided below:

Title “Principal components analysis of population
correlation matrix”;
Data SE (type=CORR);
input _TYPE_ $ _NAME_ $ x1-x3;
cards;
corr x1 1.000   .      .
corr x2 0.455  1.000   .
corr x3 0.468  0.504  1.000
;
run;
proc factor data=SE method=p nfactors=3;
run;

The resulting pattern matrix (F) is:

Factor Pattern

Factor1 Factor2 Factor3
x1 0.79017 0.60799 0.07738
x2 0.81110 -0.36403 0.45781
x3 0.81816 -0.22629 -0.52859

Step 3. Generate p uncorrelated random normal variables (M = 0, SD = 1),
each with N observations (X).

In the current example, three variables will be generated (i.e., X1, X2,
X3). To obtain a closer correspondence to the original population values, a
large sample size will be requested (N = 2,000). The line of SAS syntax below
accomplishes this step.

X = RANNOR(J(2000,3,0));

Step 4. Premultiply the random data matrix (X) with the pattern matrix (F) to
create the correlated data matrix (Z).

The fundamental equation of the Kaiser and Dickman (1962) matrix
decomposition procedure is

Z(p×N) = F(p×p)X(p×N) (9.3)
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where Z is the correlated data matrix with N cases and p variables; F is a p × p
pattern matrix from PCA (see Step 2); and X is an uncorrelated random nor-
mal data matrix with p variables, N cases (see Step 3).

This step imposes the population correlations (R) among the variables on
the sample data (X), as if the data were sampled from a population with the
intercorrelations represented by the imposed correlation matrix (reflected by
F, which reproduces R exactly).

The following SAS PROC IML syntax performs Steps 3 and 4:

PROC IML;
F = {0.79017 0.60799 0.07738, * 1

0.81110 -0.36403 0.45781,
0.81816 -0.22629 -0.52859};

X = RANNOR(J(2000,3,0)); * 2
X = X’; * 3
Z = F*X; * 4
Z = Z’; * 5

*1 = factor pattern matrix (F; Step 2); *2 = generate three uncorrelated ran-
dom normal variables (X), each with N = 2,000 (Step 3); *3 = transpose X to a
3 × 2,000 matrix in preparation for multiplication with F; *4 = Eq. 9.3; *5 =
transpose Z back into a 2,000 × 3 matrix.

If desired, the SAS syntax above can be extended to assign means and
standard deviations to the sample data. The SAS syntax below executes a lin-
ear transformation on X1 and X2 (target M = 5, SD = 1); no such transforma-
tion is done on X1 so it remains standardized (M = 0, SD = 1).

X1 =Z[,1];
X2 =Z[,2]* 5 + 1;
X3 =Z[,3]* 5 + 1;
Z = X1||X2||X3;
CREATE EST FROM Z[COLNAME={X1 X2 X3}];

*output data file is EST
APPEND FROM Z;

Step 5. Obtain descriptive statistics and correlations from the simulated data.
These statistics can be obtained from the SAS syntax below:

proc means data=EST n mean std skewness kurtosis;
var x1 x2 x3;

proc corr data=EST;
var x1 x2 x3;

run;
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The results are as follows:

The MEANS Procedure
Variable N Mean Std Dev Skewness Kurtosis
X1 2000 0.0073703 1.0087635 -0.0441861 -0.0042880
X2 2000 0.9776742 5.0160837 -0.0363566 0.0504317
X3 2000 0.8757570 5.0265543 -0.1164463 0.0314612

The CORR Procedure
Pearson Correlation Coefficients, N = 2000

Prob > |r| under H0: Rho=0
X1 X2 X3

X1 1.00000 0.44867 0.48283
<.0001 <.0001

X2 0.44867 1.00000 0.49222
<.0001 <.0001

X3 0.48283 0.49222 1.00000
<.0001 <.0001

The sample data obtained in this initial simulation approximate the target
population characteristics in terms of their univariate distributions (e.g., X2:
M = 0.98, SD = 5.02) and their intercorrelations (e.g., r of X1, X2 = .45).

In context of the Mplus illustration provided in this chapter, this process
would be repeated multiple times (e.g., number of replications = 10,000; Table
10.2) for the entire set of indicators (X1–X6). The hypothesized measurement
model is fitted to each generated data set, and the fit statistics (e.g., χ2) and
parameter estimates are averaged across replications (cf. Table 10.4).
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26, 28–29
oblique rotation (e.g., promax,

orthooblique), 31–36, 38–39, 44–
45, 51, 90–92, 195, 201

orthogonal rotation (e.g., varimax),
31–36

parallel analysis, 26, 27–29, 38–39
pattern matrix, 32, 33, 39, 90, 435–

436
PCA (comparison to), 22–23
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multiple-group solution, 271, 274–

275, 278, 284–285, 292–294
multitrait-multimethod (MTMM) ma-

trix, 222
noncongeneric measure, 167–182

466 Subject Index
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semi-definite, 188, 190–191, 193
singular, 98, 187
structure, 32, 33
tetrachoric correlation, 147, 380, 389,

391, 394
transformation, 33
unreduced correlation, 25
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81–83, 89, 106–108, 122, 125, 128,
131, 136, 167, 180, 194, 199, 221,
240, 245, 247, 263, 299, 306, 319,
372, 379, 382, 385, 400, 421, 431–
432, 437

categorical data, 388–396
chi-square calculation, 81, 418
congeneric, two-factor model, 108,

110, 112
EFA, 195
E/CFA, 196, 199–201
formative indicator model, 358–361
higher-order factor model, 329
longitudinal measurement invariance,

260–261, 264
MIMIC model, 309–310, 315–316
missing data, 368–370, 375–376
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